login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005558 a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
(Formerly M2598)
12
1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of n-step walks that start at the origin, constrained to stay in the first octant (0 <= y <= x). (Conjectured) - Benjamin Phillabaum, Mar 11 2011, corrected by Robert Israel, Oct 07 2015
For n >= 1, a(n-1) is the number of Dyck Paths with semilength n having floor((n+2)/2) U's in odd numbered positions. Example: (U is in odd numbered position and u is in even numbered position) Dyck path with n=5, floor ((5+2)/2)=3: UuddUuUddd. - Roger Ford, May 27 2017
The ratio of the number of n-step walks on the octant with an equal number of North steps and South steps to the total number of n-step walks on the octant is A005817(n)/a(n). For the reduced ratio, if n is divisible by 4 or n-1 is divisible by 4 the ratio is 1:floor(n/4)+1 and for all other values of n the ratio is 2:floor(n/2)+2. Example n = 4: A005817(4) = 10; EEEE, EEEW, EEWE, EWEE, EWEW, EEWW, ENSE, ENES, ENSW, EENS; a(4) = 20; 10:20 reduces to 1:2. - Roger Ford, Nov 04 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Slides for Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017)
Sergi Elizalde, The degree of symmetry of lattice paths, arXiv:2002.12874 [math.CO], 2020.
R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6. See Column 1 of Figure 5.
Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
FORMULA
a(n) = C(n+1, ceiling(n/2))*C(n, floor(n/2)) - C(n+1, ceiling((n-1)/2))*C(n, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: (1/(4x^2))*((16*x^2-1)*(hypergeom([1/2, 1/2],[1],16*x^2)+2*x*(4*x-1)*hypergeom([3/2, 3/2],[2],16*x^2))-2*x+1). - Mark van Hoeij, Oct 13 2009
E.g.f (conjectured): BesselI(1,2*x)*(BesselI(0,2*x)+BesselI(1,2*x))/x. - Benjamin Phillabaum, Feb 25 2011
Conjecture: (2*n+1)*(n+3)*(n+2)*a(n) - 4*(2*n^2+4*n+3)*a(n-1) - 16*n*(2*n+3)*(n-1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017
Conjecture: (n+3)*(n+2)*a(n) - 4*(n^2+3*n+1)*a(n-1) + 16*(-n^2+n+1)*a(n-2) + 64*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} n!/(k!*k!*(floor(n/2)-k)!*(floor((n+1)/2)-k)!*(k+1)) (conjectured). - Roger Ford, Aug 04 2017
a(n) = A000108(floor((n+1)/2))*A000108(floor(n/2))*(2*(floor(n/2))+1). - Roger Ford, Nov 15 2019
MAPLE
A:= proc(n, x, y) option remember;
local j, xpyp, xp, yp, res;
xpyp:= [[x-1, y], [x+1, y], [x, y-1], [x, y+1]];
res:= 0;
for j from 1 to 4 do
xp:= xpyp[j, 1];
yp:= xpyp[j, 2];
if xp < 0 or xp > yp or xp + yp > n then next fi;
res:= res + procname(n-1, xp, yp)
od;
return res
end proc:
A(0, 0, 0) := 1:
seq(add(add(A(n, x, y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
MATHEMATICA
a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
PROG
(PARI) a(n)=binomial(n+1, ceil(n/2))*binomial(n, floor(n/2)) - binomial(n+1, ceil((n-1)/2))*binomial(n, floor((n-1)/2))
(Magma) [Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
(Python)
from sympy import ceiling as c, binomial
def a(n):
return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017
CROSSREFS
See A138350 for a signed version.
Bisections are A000891 and A000888/2.
Sequence in context: A052408 A148573 A148574 * A138350 A148575 A148576
KEYWORD
nonn,walk
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 05:19 EDT 2024. Contains 371782 sequences. (Running on oeis4.)