login
A298236
Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
1
1, 42, 124, 1156, 8117, 66626, 563826, 4788445, 41239301, 355478656, 3071723340, 26560212799, 229752597446, 1987833161737, 17200321179989, 148838661721030, 1287965419617046, 11145454952537116, 96448124237702960, 834624171283503694
OFFSET
1,2
COMMENTS
Column 4 of A298240.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +32*a(n-2) -170*a(n-3) -756*a(n-4) +1343*a(n-5) +8268*a(n-6) -1088*a(n-7) -52583*a(n-8) -36137*a(n-9) +211652*a(n-10) +261539*a(n-11) -549053*a(n-12) -977458*a(n-13) +949003*a(n-14) +2156328*a(n-15) -1458478*a(n-16) -3452942*a(n-17) +2947713*a(n-18) +5123245*a(n-19) -5969104*a(n-20) -8188927*a(n-21) +10106767*a(n-22) +13662104*a(n-23) -12831855*a(n-24) -19526809*a(n-25) +11999903*a(n-26) +20566810*a(n-27) -10210867*a(n-28) -20355027*a(n-29) +6591071*a(n-30) +17534517*a(n-31) -2850386*a(n-32) -10558997*a(n-33) +518625*a(n-34) +5863076*a(n-35) +420205*a(n-36) -2587827*a(n-37) -463804*a(n-38) +711538*a(n-39) +254620*a(n-40) -205739*a(n-41) -51176*a(n-42) +24022*a(n-43) +3692*a(n-44) -6064*a(n-45) -1992*a(n-46) +624*a(n-47) for n>49
EXAMPLE
Some solutions for n=5
..0..0..1..1. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..1..1..1
..0..1..1..0. .1..0..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..0
..1..1..0..0. .1..1..1..1. .1..0..1..0. .1..1..0..0. .0..0..1..1
..1..1..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..0
..1..1..0..0. .0..1..0..0. .0..0..1..0. .1..0..0..1. .0..0..1..1
CROSSREFS
Cf. A298240.
Sequence in context: A044293 A044674 A261995 * A299362 A304613 A005557
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved