

A261995


The first of four consecutive positive integers the sum of the squares of which is equal to the sum of the squares of twentyone consecutive positive integers.


2



42, 123, 315, 1827, 4659, 13650, 34794, 201114, 512610, 1501539, 3827187, 22120875, 56382603, 165155802, 420955938, 2433095298, 6201573882, 18165636843, 46301326155, 267618362067, 682116744579, 1998054897090, 5092724921274, 29435586732234, 75026640329970
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For the first of the corresponding twentyone consecutive positive integers, see A261996.


LINKS



FORMULA

G.f.: 3*x*(6*x^8+8*x^6+27*x^5596*x^4+504*x^3+64*x^2+27*x+14) / ((x1)*(x^8110*x^4+1)).


EXAMPLE

42 is in the sequence because 42^2 + ... + 45^2 = 7574 = 8^2 + ... + 28^2.


PROG

(PARI) Vec(3*x*(6*x^8+8*x^6+27*x^5596*x^4+504*x^3+64*x^2+27*x+14)/((x1)*(x^8110*x^4+1)) + O(x^40))


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



