login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The first of four consecutive positive integers the sum of the squares of which is equal to the sum of the squares of twenty-one consecutive positive integers.
2

%I #6 Sep 08 2015 08:54:00

%S 42,123,315,1827,4659,13650,34794,201114,512610,1501539,3827187,

%T 22120875,56382603,165155802,420955938,2433095298,6201573882,

%U 18165636843,46301326155,267618362067,682116744579,1998054897090,5092724921274,29435586732234,75026640329970

%N The first of four consecutive positive integers the sum of the squares of which is equal to the sum of the squares of twenty-one consecutive positive integers.

%C For the first of the corresponding twenty-one consecutive positive integers, see A261996.

%H Colin Barker, <a href="/A261995/b261995.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,110,-110,0,0,-1,1).

%F G.f.: -3*x*(6*x^8+8*x^6+27*x^5-596*x^4+504*x^3+64*x^2+27*x+14) / ((x-1)*(x^8-110*x^4+1)).

%e 42 is in the sequence because 42^2 + ... + 45^2 = 7574 = 8^2 + ... + 28^2.

%o (PARI) Vec(-3*x*(6*x^8+8*x^6+27*x^5-596*x^4+504*x^3+64*x^2+27*x+14)/((x-1)*(x^8-110*x^4+1)) + O(x^40))

%Y Cf. A157092, A246642, A261996.

%K nonn,easy

%O 1,1

%A _Colin Barker_, Sep 08 2015