login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261992 Expansion of psi(x) * f(-x^18)^3 / (phi(-x^3) * f(-x^3)^3) in powers of x where phi(), psi(), f() are Ramanujan theta functions. 2
1, 1, 0, 6, 5, 0, 25, 19, 0, 84, 61, 0, 248, 174, 0, 666, 455, 0, 1662, 1112, 0, 3912, 2573, 0, 8774, 5689, 0, 18894, 12102, 0, 39289, 24900, 0, 79248, 49759, 0, 155612, 96902, 0, 298338, 184408, 0, 559812, 343722, 0, 1030224, 628717, 0, 1862647, 1130418, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^-2 * eta(q^2)^2 * eta(q^6) * eta(q^18)^3 / (eta(q) * eta(q^3)^5) in powers of q.

3 * a(n) = A139214(2*n + 4). a(3*n) = A233698(n). a(3*n + 1) = A128638(n+1). a(3*n + 2) = 0.

EXAMPLE

G.f. = 1 + x + 6*x^3 + 5*x^4 + 25*x^6 + 19*x^7 + 84*x^9 + 61*x^10 + ...

G.f. = q^2 + q^3 + 6*q^5 + 5*q^6 + 25*q^8 + 19*q^9 + 84*q^11 + 61*q^12 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (1/2) x^(-1/8) EllipticTheta[ 2, 0, x^(1/2)] QPochhammer[ x^18]^3 / (EllipticTheta[ 4, 0, x^3] QPochhammer[ x^3]^3), {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^18 + A)^3 / (eta(x + A) * eta(x^3 + A)^5), n))};

CROSSREFS

Cf. A128638, A139214, A233698.

Sequence in context: A193355 A248922 A316253 * A278760 A199724 A126743

Adjacent sequences:  A261989 A261990 A261991 * A261993 A261994 A261995

KEYWORD

nonn

AUTHOR

Michael Somos, Sep 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 03:16 EDT 2019. Contains 328025 sequences. (Running on oeis4.)