OFFSET
0,2
COMMENTS
In general, if m > 2 and g.f. = Product_{k>=1} (1-x^k)*(1+x^k)^m, then a(n) ~ exp(Pi*sqrt((m-2)*n/3)) / (2^((m+1)/2) * sqrt(n)).
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 16.
FORMULA
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(5/2) * sqrt(n)).
MATHEMATICA
nmax = 80; CoefficientList[Series[Product[(1 - x^k) * (1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 08 2015
STATUS
approved