OFFSET
1,7
LINKS
F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
FORMULA
Reference gives a recurrence.
MAPLE
Hpj := proc(Hofxy, p, j)
coeftayl(Hofxy, x=0, p) ;
coeftayl(%, y=0, j) ;
simplify(%) ;
end proc:
Hxy := proc(x, y, pmax, hxyinit)
if pmax = 0 then
x*y ;
else
pp := 1;
for p from 1 to pmax do
t :=1 ;
for j from 1 to p do
t := t*(1+x^p*y^j+add(x^(k*p), k=2..pmax+1))^Hpj(hxyinit, p, j) ;
end do:
pp := pp*t ;
end do:
x*y*%/(1+x*y) ;
end if;
end proc:
hxyfin := Hxy(x, y, 0, 0) ;
for pmax from 2 to 40 do
Hxy(x, y, pmax, hxyfin) ;
taylor(%, x=0, pmax+2) ;
convert(%, polynom) ;
taylor(%, y=0, pmax+2) ;
hxyfin := convert(%, polynom) ;
hxy := (1+x*y)*hxyfin+subs({x=x^2, y=1}, hxyfin)*(1-x*y)-hxyfin^2*(1+x*y)/2+subs({x=x^2, y=y^2}, hxyfin)*(x*y-1)/2 ;
for p from 0 to pmax do
ap := 0 ;
for j from 1 to p do
ap := ap+j*Hpj(hxy, p, j) ;
end do:
printf("%d, ", ap) ;
end do:
print() ;
end do: # R. J. Mathar, Apr 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Apr 13 2019
STATUS
approved