login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005200
Total number of fixed points in rooted trees with n nodes.
(Formerly M1247)
8
1, 2, 4, 11, 28, 78, 213, 598, 1670, 4723, 13356, 37986, 108193, 309169, 884923, 2538369, 7292170, 20982220, 60451567, 174385063, 503600439, 1455827279, 4212464112, 12199373350, 35357580112, 102552754000, 297651592188, 864460682777, 2512115979800, 7304240074858
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)
F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
FORMULA
G.f. satisfies A(x)=T(x)[ 1+A(x)-A(x^2) ], where T(x)=x+x^2+2*x^3+... is g.f. for A000081.
MAPLE
# First construct T(x), the g.f. for A000081. Then we form A005200 = s and its g.f. A as follows:
s := [ 1, 2 ]; A := series(add(s[ i ]*x^i, i=1..2), x, 3); G := series(subs(x=x^2, A), x, 3);
for n from 3 to 30 do t1 := coeff(T, x, n)+add( coeff(T, x, i)*s[ n-i ], i=1..n-1)-add(coeff(T, x, i)*coeff(G, x, n-i), i=1..n-1); s := [ op(s), t1 ]; A := series(A+t1*x^n, x, n+1); G := series(subs(x=x^2, A), x, n+1); od: s; A;
# second Maple program:
with(numtheory): b:= proc(n) option remember; local d, j; if n<1 then 0 elif n=1 then 1 else add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1)/ (n-1) fi end: a:= proc(n) option remember; b(n) +add((b(n-i) -b(n-2*i)) *a(i), i=0..n-1) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2008
MATHEMATICA
terms = 30; (* T = g.f. of A000081 *)
T[x_] = 0; Do[T[x_] = x*Exp[Sum[ T[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1];
A[_] = 0; Do[A[x_] = T[x]*(1 + A[x] - A[x^2]) + O[x]^(terms+1) // Normal,
terms+1];
Drop[CoefficientList[A[x], x] , 1] (* Jean-François Alcover, Sep 30 2011, updated Jan 11 2018 *)
b[n_] := b[n] = Module[{d, j}, If[n<1, 0, If[n == 1, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]]; a[n_] := a[n] = b[n] + Sum[ (b[n-i] - b[n-2*i])*a[i], {i, 0, n-1}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved