login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005198
a(n) is the number of forests with n (unlabeled) nodes in which each component tree is planted, that is, is a rooted tree in which the root has degree 1.
(Formerly M2491)
2
0, 1, 1, 3, 5, 13, 27, 68, 160, 404, 1010, 2604, 6726, 17661, 46628, 124287, 333162, 898921, 2437254, 6640537, 18166568, 49890419, 137478389, 380031868, 1053517588, 2928246650, 8158727139, 22782938271, 63752461474, 178740014515, 502026565792, 1412409894224
OFFSET
1,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2136 (first 118 terms from Washington Bomfim)
E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
FORMULA
a(1) = 0, if n >= 2 a(n) = Sum_{P_1(n)}( Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k) ), where P_1(n) are the partitions of n without parts equal to 1: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - Washington Bomfim, Jul 05 2020
MAPLE
g:= proc(n) option remember; `if`(n<=1, n, (add(add(d*g(d),
d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, add(
binomial(g(i-1)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 07 2020
MATHEMATICA
g[n_] := g[n] = If[n <= 1, n, Sum[Sum[d g[d], {d, Divisors[j]}] g[n - j], {j, 1, n - 1}]/(n - 1)];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, Sum[Binomial[g[i - 1] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
a[n_] := b[n, n];
Array[a, 40] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
PROG
(PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1])); f[m+1] };
global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
seq(n)={my(s=0, D, c, P_1); if(n==1, return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) ), [2, n], [1, n]); s}; \\ Washington Bomfim, Jul 05 2020
CROSSREFS
Cf. A000081.
Sequence in context: A000631 A026569 A035082 * A160823 A077443 A147196
KEYWORD
nonn
EXTENSIONS
Definition clarified and more terms added from Palmer-Schwenk by N. J. A. Sloane, May 29 2012
STATUS
approved