OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)
F. Harary and E. M. Palmer, The probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85(1979) 407-415.
FORMULA
MAPLE
t1 := subs(x=x^2, F); series(T*(1-t1)-t1, x, 31);
# second Maple program:
with(numtheory): t:= proc(n) option remember; local d, j; if n<1 then 0 elif n=1 then 1 else add(add(d*t(d), d=divisors(j)) *t(n-j), j=1..n-1)/ (n-1) fi end: f:= proc(n) option remember; t(n) +add((t(n-i) -t(n-2*i)) *f(i), i=0..n-1) end: t1 := n-> `if`(type(n, odd), 0, f(n/2)): a:= proc(n) t(n) -add(t(n-i) *t1(i), i=0..n) -t1(n) end: seq(a(n), n=1..50); # Alois P. Heinz, Sep 17 2008
MATHEMATICA
t[n_] := t[n] = If[n<1, 0, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]]; f[n_] := f[n] = t[n]+Sum[(t[n-i]-t[n-2*i])*f[i], {i, 0, n-1}]; t1[n_] := If[OddQ[n], 0, f[n/2]]; a[n_] := t[n]-Sum[t[n-i]*t1[i], {i, 0, n}]-t1[n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 24 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved