login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052538
Expansion of (1-x)/(1-2*x-3*x^2+3*x^3).
2
1, 1, 5, 10, 32, 79, 224, 589, 1613, 4321, 11714, 31552, 85283, 230080, 621353, 1677097, 4528013, 12223258, 32999264, 89084263, 240496544, 649248085, 1752733013, 4731720649, 12773896082, 34484755072, 93096036443
OFFSET
0,3
FORMULA
G.f.: (1-x)/(1 - 2*x - 3*x^2 + 3*x^3)
a(n) = 2*a(n-1) + 3*a(n-2) - 3*a(n-3), with a(0)=1, a(1)=1, a(2)=5.
a(n) = Sum_{alpha = RootOf(1-2*x-3*x^2+3*x^3)} (1/107)*(13 + 38*alpha +33*alpha^2)*alpha^(-n-1).
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Z, Z, Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-2*x-3*x^2+3*x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 3, -3}, {1, 1, 5}, 30] (* G. C. Greubel, May 09 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-3*x^2+3*x^3)) \\ G. C. Greubel, May 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -2*x-3*x^2+3*x^3) )); // G. C. Greubel, May 09 2019
(Sage) ((1-x)/(1-2*x-3*x^2+3*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
(GAP) a:=[1, 1, 5];; for n in [4..30] do a[n]:=2*a[n-1]+3*a[n-2]-3*a[n-3]; od; a; # G. C. Greubel, May 09 2019
CROSSREFS
Sequence in context: A005201 A221304 A094234 * A240413 A304215 A073705
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 08 2000
STATUS
approved