login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020995
Numbers k such that the sum of the digits of Fibonacci(k) is k.
6
0, 1, 5, 10, 31, 35, 62, 72, 175, 180, 216, 251, 252, 360, 494, 504, 540, 946, 1188, 2222
OFFSET
1,3
COMMENTS
Since the number of digits in the k-th Fibonacci number ~ k*log_10(Golden Ratio), theoretically this sequence is infinite, but then the average density of those digits = ~ 0.208987. - Robert G. Wilson v
Robert Dawson of Saint Mary's University says it is likely that 2222 is the last term, as (assuming that the digits are equally distributed) the expected digit sum is ~ 0.9*k. - Stefan Steinerberger, Mar 12 2006 [Assuming that the average digit is (0+1+2+...+9)/10 = 9/2, the expected digit sum is ~ (9/2)*log_10((1+sqrt(5))/2)*k = 0.94044438...*k. - Jon E. Schoenfield, Aug 28 2022]
Bankoff's short paper lists the first seven terms. - T. D. Noe, Mar 19 2012
No more terms < 150000. - Manfred Scheucher, Aug 03 2015
If it exists, a(21) > 10^6. - Robert Price, May 26 2019
REFERENCES
Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers, Prometheus Books, NY, 2007, page 209.
LINKS
Leon Bankoff, A Fibonacci Curiosity, Fibonacci Quarterly 14, Feb. 1976, p. 17.
Pat Ballew, Fibonacci Digit Sums, Pat's Blog, Sunday, 5 August 2012.
Manfred Scheucher, Sage Script
David Terr, On the Sums of Digits of Fibonacci Numbers, Fibonacci Quarterly 34, Aug. 1996, pp. 349-355.
EXAMPLE
Fibonacci(10) = 55 and 5+5 = 10.
MATHEMATICA
Do[ If[ Apply[ Plus, IntegerDigits[ Fibonacci[n]]] == n, Print[n]], {n, 1, 10^5} ] (* Sven Simon *)
Do[ If[ Mod[ Fibonacci[n], 9] == Mod[n, 9], If[ Plus @@ IntegerDigits[ Fibonacci[n]] == n, Print[n]]], {n, 0, 10^6}] (* Robert G. Wilson v *)
Select[Range[0, 10^5], Plus @@ IntegerDigits[Fibonacci[ # ]] == # &] (* Ron Knott, Oct 30 2010 *)
PROG
(PARI) isok(n) = sumdigits(fibonacci(n)) == n; \\ Michel Marcus, Feb 18 2015
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
STATUS
approved