OFFSET
0,4
COMMENTS
a(n) and Fibonacci(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) A007887(n). Thus (a(n) mod 9) is periodic with Pisano period A001175(9) = 24. - Hieronymus Fischer, Jun 25 2007
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
T. D. Noe, Plot of a(n)-n for n = 0..100000
FORMULA
a(n) = Fibonacci(n) - 9*Sum_{k>0} floor(Fibonacci(n)/10^k). - Hieronymus Fischer, Jun 25 2007
MATHEMATICA
Table[Plus@@IntegerDigits@(Fibonacci[n]), {n, 0, 90}] (* Vincenzo Librandi, Jun 18 2015 *)
PROG
(PARI) a(n)=sumdigits(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
(Haskell)
a004090 = a007953 . a000045 -- Reinhard Zumkeller, Nov 17 2014
(Magma) [&+Intseq(Fibonacci(n)): n in [0..80] ]; // Vincenzo Librandi, Jun 18 2015
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved