OFFSET
0,5
COMMENTS
Consider a rabbits generation tree, and code each level with 0 for a single segment, and 1 for a branched segment. The current sequence written in binary: 0, 0, 0, 1, 10, 100, is obtained with this scheme applied on sequence A000930, and follows recurrence formula a(n+3) = 2^A000930(n-1)*a(n+2) + a(n), when n >= 3. Note that the Fib. Quart. article gives incorrect value of 158022 for a(10). - Michel Marcus, Jul 29 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Eric M. Schmidt, Table of n, a(n) for n = 0..20
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318 (see Table 2 page 313).
PROG
(PARI) A000930(n) = sum(i=0, n\3, binomial(n-2*i, i))
a(n) = if (n==0, 0, if (n==1, 0, if (n==2, 0, if (n==3, 1, 2^A000930(n-4)*a(n-1) + a(n-3))))) \\ Michel Marcus, Jul 29 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(10) corrected and sequence extended by Michel Marcus, Jul 29 2013
More terms from Eric M. Schmidt, Jul 11 2015
STATUS
approved