login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005204
Coding a recurrence.
(Formerly M1199)
2
0, 0, 0, 1, 2, 4, 9, 38, 308, 4937, 316006, 161795380, 1325427757897, 694905868332618342, 186537373642942364470529332, 410200022670422956346283949740775609161, 472928427326946774459561651845917849178636866326243365478
OFFSET
0,5
COMMENTS
Consider a rabbits generation tree, and code each level with 0 for a single segment, and 1 for a branched segment. The current sequence written in binary: 0, 0, 0, 1, 10, 100, is obtained with this scheme applied on sequence A000930, and follows recurrence formula a(n+3) = 2^A000930(n-1)*a(n+2) + a(n), when n >= 3. Note that the Fib. Quart. article gives incorrect value of 158022 for a(10). - Michel Marcus, Jul 29 2013
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318 (see Table 2 page 313).
PROG
(PARI) A000930(n) = sum(i=0, n\3, binomial(n-2*i, i))
a(n) = if (n==0, 0, if (n==1, 0, if (n==2, 0, if (n==3, 1, 2^A000930(n-4)*a(n-1) + a(n-3))))) \\ Michel Marcus, Jul 29 2013
CROSSREFS
Cf. A005203 (same kind of encoding).
Sequence in context: A327057 A151891 A309340 * A204428 A162111 A241600
KEYWORD
nonn
EXTENSIONS
a(10) corrected and sequence extended by Michel Marcus, Jul 29 2013
More terms from Eric M. Schmidt, Jul 11 2015
STATUS
approved