The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005207 a(n) = (F(2*n-1) + F(n+1))/2 where F(n) is a Fibonacci number. (Formerly M1183) 12
 1, 1, 2, 4, 9, 21, 51, 127, 322, 826, 2135, 5545, 14445, 37701, 98514, 257608, 673933, 1763581, 4615823, 12082291, 31628466, 82798926, 216761547, 567474769, 1485645049, 3889431721, 10182603746, 26658304492, 69792188337, 182718064101, 478361686155, 1252366480135 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of block fountains with exactly n coins in the base when mirror image fountains are identified. - Michael Woltermann (mwoltermann(AT)washjeff.edu), Oct 06 2010 a(n) = C(F(n+1)+1,2) + C(F(n)+1,2) = pairwise sums of A033192. - Ralf Stephan, Jul 06 2003 Number of (3412,54312)- and (3412,45321)-avoiding involutions in S_{n+1}. - Ralf Stephan, Jul 06 2003 Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 1. - Herbert Kociemba, May 31 2004 The sequence 1,1,2,4,9,... has g.f. 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x))))=(1-3*x+x^2+x^2)/(1-4*x+3*x^2+2*x^3-x^4), and general term (A001519(n)+A000045(n+1))/2. It is the binomial transform of A001519 aerated. - Paul Barry, Dec 17 2009 The Kn3 and Kn4 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 lead to this sequence. - Johannes W. Meijer, Jul 14 2011 Convolution of [1,1,1,2,5,...], which is A001519 with another leading 1, and A212804. - R. J. Mathar, Apr 14 2018 a(n) is the number of Motzkin n-paths of height <= 3. - Alois P. Heinz, Nov 24 2023 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..300 from Vincenzo Librandi) E. S. Egge, Restricted 3412-Avoiding Involutions: Continued Fractions, Chebyshev Polynomials and Enumerations, sec. 8, arXiv:math/0307050 [math.CO], 2003. S. Felsner, D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3. Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016. M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. (Annotated scanned copy) Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv preprint arXiv:1105.3713 [math.CO], 2011. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Michael Woltermann, Problem 1826, Mathematics Magazine, 83 (2010), 304-305. Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1). FORMULA G.f.: 1-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1)). a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4). a(n) = (w^(2*n-1) + w^(1-2*n) + w^(n+1) - (-w)^(-1-n))/(4*w-2) where w = (1+sqrt(5))/2. a(n) = (2/5)*Sum_{k=1..4} ( sin(Pi*k/5)^2*(1 + 2*cos(Pi*k/5))^n ). - Herbert Kociemba, May 31 2004 a(-1-2*n) = A027994(2*n); a(-2*n)=A059512(2*n+1). Let M = an infinite tridiagonal matrix with all 1's in the super and main diagonals and [1,1,1,0,0,0,...] in the subdiagonal. Let V = vector [1,0,0,0,...]. The sequence is generated as leftmost column of M*V iterates. - Gary W. Adamson, Jun 07 2011 2*a(n) = A000045(n+1) + A001519(n). - R. J. Mathar, Apr 14 2018 a(n) mod 2 = A131719(n+3). - Alois P. Heinz, Nov 24 2023 MAPLE A005207:=-(1-2*z-z^2+z^3)/(z^2-3*z+1)/(z^2+z-1); # Simon Plouffe in his 1992 dissertation with offset 0 a:= n-> (Matrix([[1, 1, 1, 3]]). Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -3, -2, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..34); # Alois P. Heinz, Sep 06 2008 MATHEMATICA LinearRecurrence[{4, -3, -2, 1}, {1, 2, 4, 9}, 30] (* Jean-François Alcover, Jan 31 2016 *) PROG (PARI) a(n)=(fibonacci(2*n-1)+fibonacci(n+1))/2 (PARI) x='x+O('x^50); Vec(-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1))) \\ G. C. Greubel, Mar 05 2017 CROSSREFS Cf. A000045, A001006, A001519, A131719. Sequence in context: A048285 A051529 A230554 * A257519 A257387 A094286 Adjacent sequences: A005204 A005205 A005206 * A005208 A005209 A005210 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Nov 24 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:23 EST 2023. Contains 367510 sequences. (Running on oeis4.)