The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131719 Period 6: repeat [0, 1, 1, 1, 1, 0]. 5
 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1). FORMULA a(n) = (1/90)*{4*(n mod 6)+19*[(n+1) mod 6]+4*[(n+2) mod 6]+4*[(n+3) mod 6]+4*[(n+4) mod 6]-11*[(n+5) mod 6]}. - Paolo P. Lava, Oct 02 2007 G.f.: -(x^2+1)*x/(x-1)/(x^2+x+1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007 a(n) = 2/3-cos(Pi*n/3)/2+sqrt(3)*sin(Pi*n/3)/6 -cos(2*Pi*n/3)/6 +sqrt(3)*sin(2*Pi*n/3)/6. - R. J. Mathar, Oct 08 2011 a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4. - Wesley Ivan Hurt, Jun 19 2016 a(n+3) = A000358(n)(mod 2), for n>0. - John M. Campbell, Jul 08 2016 MAPLE A131719:=n->[0, 1, 1, 1, 1, 0][(n mod 6)+1]: seq(A131719(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016 MATHEMATICA PadRight[{}, 200, {0, 1, 1, 1, 1, 0}] (* Wesley Ivan Hurt, Jun 19 2016 *) PROG (PARI) a(n)=[0, 1, 1, 1, 1, 0][n%6+1] \\ Charles R Greathouse IV, Jun 02 2011 (MAGMA) &cat[[0, 1, 1, 1, 1, 0]^^20]; // Wesley Ivan Hurt, Jun 19 2016 CROSSREFS Sequence in context: A102460 A080908 A131720 * A100656 A285274 A189081 Adjacent sequences:  A131716 A131717 A131718 * A131720 A131721 A131722 KEYWORD nonn,easy,less AUTHOR Paul Curtz, Sep 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 07:05 EST 2020. Contains 332299 sequences. (Running on oeis4.)