login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131717
Natural numbers A000027 with 6n+4 and 6n+5 terms swapped.
3
1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 10, 12, 13, 14, 15, 17, 16, 18, 19, 20, 21, 23, 22, 24, 25, 26, 27, 29, 28, 30, 31, 32, 33, 35, 34, 36, 37, 38, 39, 41, 40, 42, 43, 44, 45, 47, 46, 48, 49, 50, 51, 53, 52, 54, 55, 56, 57, 59, 58, 60, 61, 62, 63, 65, 64, 66, 67, 68, 69, 71, 70, 72
OFFSET
1,2
COMMENTS
Hexaperiodic differences: 1, 1, 2, -1, 2, 1; 0, 1, -3, 3, -1, 0 (even palindromic signed); 1,-4, 6, -4, 1, 0.
FORMULA
a(n) = A008585(n/3) if n is congruent to 0 mod 3. - Frieder Mittmann, Nov 11 2014
a(n) = A007310((n-1)/3) if n is congruent to 1 mod 3. - Frieder Mittmann, Nov 11 2014
a(n) = A047235((n-2)/3) if n is congruent to 2 mod 3. - Frieder Mittmann, Nov 11 2014
G.f.: x*(2*x^5-x^4+2*x^3+x^2+x+1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Nov 11 2014
a(n) = (24*floor(n/6)-3*(n^2-3*n-2)-9*floor(n/3)*(3*floor(n/3)-2*n+3)+(-1)^floor(n/3)*(3*n^2-5*n-6+3*floor(n/3)*(9*floor(n/3)-6*n+5)))/4. - Luce ETIENNE, Apr 18 2017
MAPLE
seq(seq(6*i+s, s=[1, 2, 3, 5, 4, 6]), i=0..100); # Robert Israel, Nov 11 2014
MATHEMATICA
Drop[CoefficientList[Series[x (2x^5 - x^4 + 2x^3 + x^2 + x + 1)/((x - 1)^2 (x + 1) (x^2 - x + 1) (x^2 + x + 1)), {x, 0, 100}], x], 1] (* Indranil Ghosh, Apr 18 2017 *)
Table[Sum[(7 #1 - 13 #2 + 17 #3 - 3 #4 + 2 #5 + 2 #6)/30 & @@ Mod[k + Range[0, 5], 6], {k, 0, n}], {n, 0, 71}] (* Michael De Vlieger, Apr 22 2017 *)
PROG
(PARI) Vec(x*(2*x^5-x^4+2*x^3+x^2+x+1)/((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 11 2014
CROSSREFS
Cf. A131042.
Sequence in context: A222240 A309151 A138311 * A084489 A084490 A060119
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 15 2007
STATUS
approved