login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131720
Period 6: repeat [0, 1, -1, 1, -1, 0].
2
0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 1, -1, 0
OFFSET
0,1
FORMULA
a(n) = 1/6*cos(1/3*Pi*n)+1/6*3^(1/2)*sin(1/3*Pi*n)+1/2*cos(2/3*Pi*n)+1/6*3^(1/2)*sin(2/3*Pi*n)+2/3*(-1)^(1+n). - R. J. Mathar, Nov 15 2007
G.f.: x*(x^2+1) / ((x+1)*(x^2-x+1)*(x^2+x+1)). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) = 0 for n>4. - Wesley Ivan Hurt, Jun 20 2016
MAPLE
A131720:=n->[0, 1, -1, 1, -1, 0][(n mod 6)+1]: seq(A131720(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
MATHEMATICA
PadRight[{}, 100, {0, 1, -1, 1, -1, 0}] (* Harvey P. Dale, Aug 20 2015 *)
PROG
(PARI) a(n)=[0, 1, -1, 1, -1, 0][n%6+1] \\ Charles R Greathouse IV, Jun 02 2011
(Magma) &cat [[0, 1, -1, 1, -1, 0]^^20]; // Wesley Ivan Hurt, Jun 20 2016
CROSSREFS
Sequence in context: A176416 A102460 A080908 * A131719 A342460 A100656
KEYWORD
sign,easy,less
AUTHOR
Paul Curtz, Sep 15 2007
STATUS
approved