This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102460 a(n) = 1 if n is a Lucas number, else a(n) = 0. 14
 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The number of nonnegative integer solutions to 25*x^4-10*n^2*x^2+n^4-16=0. - Hieronymus Fischer, Jul 02 2007 a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=x^4-10*m^2*x^2+25*m^4-16. - Hieronymus Fischer, Jul 02 2007 For n>=3: a(n)=1 iff floor(log_phi(n+1/2))=ceiling(log_phi(n-1/2)). - Hieronymus Fischer, Jul 02 2007 LINKS Antti Karttunen, Table of n, a(n) for n = 0..65537 Casey Mongoven, Lucas Binary no. 1; electronic music created with this sequence. FORMULA G.f.: g(x)=sum{k>=0, x^A000032(k)}. - Hieronymus Fischer, Jul 02 2007 a(n)=1+floor(arcsinh(n/2)/log(phi))-ceiling(arccosh(n/2)/log(phi)) for n>=3, where phi=(1+sqrt(5))/2. - Hieronymus Fischer, Jul 02 2007 a(n)=1+A130241(n)-A130242(n) for n>=3. - Hieronymus Fischer, Jul 02 2007 a(n)=1+A130247(n)-A130242(n) for n=>2. - Hieronymus Fischer, Jul 02 2007 a(n)=A130245(n)-A130245(n-1) for n>=1. - Hieronymus Fischer, Jul 02 2007 For n>=3: a(n)=1 iff A130241(n)=A130242(n). - Hieronymus Fischer, Jul 02 2007 MATHEMATICA {0}~Join~ReplacePart[ConstantArray[0, Last@ #], Map[# -> 1 &, #]] &@ Array[LucasL, 11, 0] (* Michael De Vlieger, Nov 22 2017 *) PROG (PARI) a(n)=my(f=factor(25*'x^4-10*n^2*'x^2+n^4-16)[, 1]); sum(i=1, #f, poldegree(f[i])==1 && polcoeff(f[i], 0)<=0) \\ Charles R Greathouse IV, Nov 06 2014 (PARI) A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ Antti Karttunen, Nov 22 2017 CROSSREFS Cf. A000032, A130241, A130242, A130247, A123927. Cf. partial sums A130245. Cf. also A010056, A104162, A105348, A147612, A294878. Sequence in context: A269528 A099859 A176416 * A080908 A131720 A131719 Adjacent sequences:  A102457 A102458 A102459 * A102461 A102462 A102463 KEYWORD nonn AUTHOR Casey Mongoven, Apr 18 2005 EXTENSIONS Data section extended up to a(123) by Antti Karttunen, Nov 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 06:34 EST 2019. Contains 329784 sequences. (Running on oeis4.)