login
A130245
Number of Lucas numbers (A000032) <= n.
16
0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
0,3
COMMENTS
Partial sums of the Lucas indicator sequence A102460.
For n>=2, we have a(A000032(n)) = n + 1.
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
FORMULA
a(n) = 1 +floor(log_phi((n+sqrt(n^2+4))/2)) = 1 +floor(arcsinh(n/2)/log(phi)) for n>=2, where phi = (1+sqrt(5))/2.
a(n) = A130241(n)+1 = A130242(n+1) for n>=2.
G.f.: g(x) = 1/(1-x)*sum{k>=0, x^Lucas(k)}.
a(n) = 1 +floor(log_phi(n+1/2)) for n>=1, where phi is the golden ratio.
EXAMPLE
a(9)=5 because there are 5 Lucas numbers <=9 (2,1,3,4 and 7).
MATHEMATICA
Join[{0}, Table[1+Floor[Log[GoldenRatio, (2*n+1)/2]], {n, 1, 100}]] (* G. C. Greubel, Sep 09 2018 *)
PROG
(PARI)
A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); };
A130245(n) = if(!n, n, A102460(n)+A130245(n-1));
\\ Or just as:
c=0; for(n=0, 123, c += A102460(n); print1(c, ", ")); \\ Antti Karttunen, May 13 2018
(Magma) [0] cat [1+Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [1..100]]; // G. C. Greubel, Sep 09 2018
(Python)
from itertools import count, islice
def A130245_gen(): # generator of terms
yield from (0, 1, 2)
a, b = 3, 4
for i in count(3):
yield from (i, )*(b-a)
a, b = b, a+b
A130245_list = list(islice(A130245_gen(), 40)) # Chai Wah Wu, Jun 08 2022
CROSSREFS
Partial sums of A102460.
For partial sums of this sequence, see A130246. Other related sequences: A000032, A130241, A130242, A130247, A130249, A130253, A130255, A130259.
For Fibonacci inverse, see A130233 - A130240, A104162, A108852.
Sequence in context: A325282 A305233 A130242 * A087793 A030411 A194817
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 19 2007, Jul 02 2007
STATUS
approved