

A130245


Number of Lucas numbers (A000032) <= n.


10



0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Partial sums of the Lucas indicator sequence A102460.
For n>=2, we have a(A000032(n)) = n + 1.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..64079


FORMULA

a(n) = 1 +floor(log_phi((n+sqrt(n^2+4))/2)) = 1 +floor(arcsinh(n/2)/log(phi)) for n>=2, where phi = (1+sqrt(5))/2.
a(n) = A130241(n)+1 = A130242(n+1) for n>=2.
G.f.: g(x) = 1/(1x)*sum{k>=0, x^Lucas(k)}.
a(n) = 1 +floor(log_phi(n+1/2)) for n>=1, where phi is the golden ratio.


EXAMPLE

a(9)=5 because there are 5 Lucas numbers <=9 (2,1,3,4 and 7).


MATHEMATICA

Join[{0}, Table[1+Floor[Log[GoldenRatio, (2*n+1)/2]], {n, 1, 100}]] (* G. C. Greubel, Sep 09 2018 *)


PROG

(PARI)
A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); };
A130245(n) = if(!n, n, A102460(n)+A130245(n1));
\\ Or just as:
c=0; for(n=0, 123, c += A102460(n); print1(c, ", ")); \\ Antti Karttunen, May 13 2018
(MAGMA) [0] cat [1+Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [1..100]]; // G. C. Greubel, Sep 09 2018


CROSSREFS

Partial sums of A102460.
For partial sums of this sequence, see A130246. Other related sequences: A000032, A130241, A130242, A130247, A130249, A130253, A130255, A130259.
For Fibonacci inverse, see A130233  A130240, A104162, A108852.
Sequence in context: A325282 A305233 A130242 * A087793 A030411 A194817
Adjacent sequences: A130242 A130243 A130244 * A130246 A130247 A130248


KEYWORD

nonn


AUTHOR

Hieronymus Fischer, May 19 2007, Jul 02 2007


STATUS

approved



