OFFSET
0,2
COMMENTS
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) where phi = (1+sqrt(5))/2 = A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2) / log(phi)), with log(phi) = A002390.
a(n) = A130234(n+1) - 1.
G.f.: g(x) = 1/(1-x) * Sum_{k>=1} x^Fibonacci(k).
a(n) = floor(log_phi(sqrt(5)*n+1)), n >= 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
EXAMPLE
a(10) = 6, since Fibonacci(6) = 8 <= 10 but Fibonacci(7) = 13 > 10.
MATHEMATICA
fibLLog[0] := 0; fibLLog[1] := 2; fibLLog[n_Integer] := fibLLog[n] = If[n < Fibonacci[fibLLog[n - 1] + 1], fibLLog[n - 1], fibLLog[n - 1] + 1]; Table[fibLLog[n], {n, 0, 88}] (* Alonso del Arte, Sep 01 2013 *)
PROG
(PARI) a(n)=log(sqrt(5)*n+1.5)\log((1+sqrt(5))/2) \\ Charles R Greathouse IV, Mar 21 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved