|
|
A130233
|
|
a(n) is the maximal k such that Fibonacci(k) <= n (the "lower" Fibonacci Inverse).
|
|
40
|
|
|
0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Inverse of the Fibonacci sequence (A000045), nearly, since a(Fibonacci(n)) = n except for n = 1 (see A130234 for another version). a(n) + 1 is equal to the partial sum of the Fibonacci indicator sequence (see A104162).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) where phi = (1+sqrt(5))/2 = A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2) / log(phi)), with log(phi) = A002390.
G.f.: g(x) = 1/(1-x) * Sum_{k>=1} x^Fibonacci(k).
a(n) = floor(log_phi(sqrt(5)*n+1)), n >= 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
|
|
EXAMPLE
|
a(10) = 6, since Fibonacci(6) = 8 <= 10 but Fibonacci(7) = 13 > 10.
|
|
MATHEMATICA
|
fibLLog[0] := 0; fibLLog[1] := 2; fibLLog[n_Integer] := fibLLog[n] = If[n < Fibonacci[fibLLog[n - 1] + 1], fibLLog[n - 1], fibLLog[n - 1] + 1]; Table[fibLLog[n], {n, 0, 88}] (* Alonso del Arte, Sep 01 2013 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|