login
A130235
Partial sums of the 'lower' Fibonacci Inverse A130233.
14
0, 2, 5, 9, 13, 18, 23, 28, 34, 40, 46, 52, 58, 65, 72, 79, 86, 93, 100, 107, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 227, 236, 245, 254, 263, 272, 281, 290, 299, 308, 317, 326, 335, 344, 353, 362, 371, 380, 389, 398, 407, 417, 427
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130233(k) = (n+1)*A130233(n) - Fib(A130233(n)+2) + 1.
G.f.: 1/(1-x)^2 * Sum_{k>=1} x^Fib(k). [corrected by Joerg Arndt, Apr 14 2020]
MATHEMATICA
nmax = 90; CoefficientList[Series[Sum[x^Fibonacci[k], {k, 1, 1 + Log[3/2 + Sqrt[5]*nmax]/Log[GoldenRatio]}]/(1-x)^2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2020 *)
PROG
(Magma)
m:=120;
f:= func< x | (&+[x^Fibonacci(j): j in [1..Floor(3*Log(3*m+1))]])/(1-x)^2 >;
R<x>:=PowerSeriesRing(Rationals(), m+1);
[0] cat Coefficients(R!( f(x) )); // G. C. Greubel, Mar 17 2023
(SageMath)
m=120
def f(x): return sum( x^fibonacci(j) for j in range(1, int(3*log(3*m+1))))/(1-x)^2
def A130235_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( f(x) ).list()
A130235_list(m) # G. C. Greubel, Mar 17 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved