OFFSET
0,3
COMMENTS
FORMULA
a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
a(n) = A130233(n-1) + 1 for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
a(n) = A108852(n-1). - R. J. Mathar, Jan 31 2015
EXAMPLE
a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
MAPLE
A130234 := proc(n)
local i;
for i from 0 do
if A000045(i) >= n then
return i;
end if;
end do:
end proc: # R. J. Mathar, Jan 31 2015
MATHEMATICA
a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
a /@ Range[0, 80] (* Jean-François Alcover, Apr 13 2020 *)
PROG
(PARI) a(n)=my(k); while(fibonacci(k)<n, k++); k \\ Charles R Greathouse IV, Feb 03 2014, corrected by M. F. Hasler, Apr 07 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved