login
A130234
Minimal index k of a Fibonacci number such that Fibonacci(k) >= n (the 'upper' Fibonacci Inverse).
23
0, 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
OFFSET
0,3
COMMENTS
Inverse of the Fibonacci sequence (A000045), nearly, since a(Fibonacci(n)) = n except for n = 2 (see A130233 for another version). a(n+1) is equal to the partial sum of the Fibonacci indicator sequence (see A104162).
FORMULA
a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
a(n) = A130233(n-1) + 1 for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
a(n) = A108852(n-1). - R. J. Mathar, Jan 31 2015
EXAMPLE
a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
MAPLE
A130234 := proc(n)
local i;
for i from 0 do
if A000045(i) >= n then
return i;
end if;
end do:
end proc: # R. J. Mathar, Jan 31 2015
MATHEMATICA
a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
a /@ Range[0, 80] (* Jean-François Alcover, Apr 13 2020 *)
PROG
(PARI) a(n)=my(k); while(fibonacci(k)<n, k++); k \\ Charles R Greathouse IV, Feb 03 2014, corrected by M. F. Hasler, Apr 07 2021
CROSSREFS
Partial sums: A130236.
Other related sequences: A000045, A130233, A130256, A130260, A104162, A108852.
Lucas inverse: A130241 - A130248.
Sequence in context: A370302 A098200 A092405 * A108852 A179413 A119476
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved