login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130256
Minimal index k of an odd Fibonacci number A001519 such that A001519(k) = Fibonacci(2*k-1) >= n (the 'upper' odd Fibonacci Inverse).
9
0, 0, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
OFFSET
0,3
COMMENTS
Inverse of the odd Fibonacci sequence (A001519), nearly, since a(A001519(n))=n except for n=1 (see A130255 for another version).
a(n+1) is the number of odd Fibonacci numbers (A001519) <= n (for n >= 0).
LINKS
FORMULA
a(n) = ceiling((1+arccosh(sqrt(5)*n/2)/log(phi))/2), where phi=(1+sqrt(5))/2.
G.f.: (x/(1-x))*Sum_{k>=0} x^Fibonacci(2*k-1).
a(n) = ceiling((1/2)*(1+log_phi(sqrt(5)*n-1))) for n >= 2, where phi=(1+sqrt(5))/2.
EXAMPLE
a(10)=4 because A001519(4) = 13 >= 10, but A001519(3) = 5 < 10.
MATHEMATICA
Join[{0, 0}, Table[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*n - 1)])], {n, 2, 100}]] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) for(n=0, 100, print1(if(n==0, 0, if(n==1, 0, ceil((1/2)*(1 + log(sqrt(5)*n-1)/(log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0, 0] cat [Ceiling((1/2)*(1 + Log(Sqrt(5)*n-1)/(Log((1+Sqrt(5))/2)))): n in [2..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
Cf. partial sums A130258.
Other related sequences: A000045, A001906, A130234, A130237, A130239, A130255, A130260.
Lucas inverse: A130241 - A130248.
Sequence in context: A084526 A356593 A081288 * A335741 A103586 A194847
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 24 2007, Jul 02 2007
STATUS
approved