OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = ceiling((1+arccosh(sqrt(5)*n/2)/log(phi))/2), where phi=(1+sqrt(5))/2.
G.f.: (x/(1-x))*Sum_{k>=0} x^Fibonacci(2*k-1).
a(n) = ceiling((1/2)*(1+log_phi(sqrt(5)*n-1))) for n >= 2, where phi=(1+sqrt(5))/2.
MATHEMATICA
Join[{0, 0}, Table[Ceiling[1/2*(1 + Log[GoldenRatio, (Sqrt[5]*n - 1)])], {n, 2, 100}]] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) for(n=0, 100, print1(if(n==0, 0, if(n==1, 0, ceil((1/2)*(1 + log(sqrt(5)*n-1)/(log((1+sqrt(5))/2)))))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0, 0] cat [Ceiling((1/2)*(1 + Log(Sqrt(5)*n-1)/(Log((1+Sqrt(5))/2)))): n in [2..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 24 2007, Jul 02 2007
STATUS
approved