OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
FORMULA
a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0.
a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1.
a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2.
a(n) = A130259(n-1) + 1, for n>=1.
G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k).
MATHEMATICA
Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* G. C. Greubel, Sep 12 2018 *)
PROG
(PARI) for(n=0, 100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ G. C. Greubel, Sep 12 2018
(Magma) [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // G. C. Greubel, Sep 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 25 2007, May 28 2007, Jul 02 2007
STATUS
approved