Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:30
%S 0,1,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,
%T 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,
%U 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
%N Minimal index k of an even Fibonacci number A001906 such that A001906(k) = Fib(2k) >= n (the 'upper' even Fibonacci Inverse).
%C Inverse of the even Fibonacci sequence (A001906), since a(A001906(n))=n (see A130259 for another version).
%C a(n+1) is the number of even Fibonacci numbers (A001906) <=n.
%H G. C. Greubel, <a href="/A130260/b130260.txt">Table of n, a(n) for n = 0..10000</a>
%H Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, <a href="https://doi.org/10.2478/auom-2021-0002">On some new results for the generalised Lucas sequences</a>, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
%F a(n) = ceiling(arcsinh(sqrt(5)*n/2)/(2*log(phi))) for n>=0.
%F a(n) = ceiling(arccosh(sqrt(5)*n/2)/(2*log(phi))) for n>=1.
%F a(n) = ceiling(log_phi(sqrt(5)*n)/2)=ceiling(log_phi(sqrt(5)*n-1)/2) for n>=1, where phi=(1+sqrt(5))/2.
%F a(n) = A130259(n-1) + 1, for n>=1.
%F G.f.: g(x)=x/(1-x)*Sum_{k>=0} x^Fib(2*k).
%e a(10)=4 because A001906(4)=21>=10, but A001906(3)=8<10.
%t Join[{0}, Table[Ceiling[Log[GoldenRatio, Sqrt[5]*n]/2], {n, 1, 100}]] (* _G. C. Greubel_, Sep 12 2018 *)
%o (PARI) for(n=0,100, print1(if(n==0, 0, ceil(log(sqrt(5)*n)/(2*log((1+ sqrt(5))/2)))), ", ")) \\ _G. C. Greubel_, Sep 12 2018
%o (Magma) [0] cat [Ceiling(Log(Sqrt(5)*n)/(2*Log((1+ Sqrt(5))/2))): n in [1..100]]; // _G. C. Greubel_, Sep 12 2018
%Y Cf. partial sums A130262. Other related sequences: A000045, A001519, A130234, A130237, A130239, A130256, A130259. Lucas inverse: A130241 - A130248.
%K nonn
%O 0,3
%A _Hieronymus Fischer_, May 25 2007, May 28 2007, Jul 02 2007