OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450
FORMULA
E.g.f.: Product_{k>0} (1+sinh(x^k/k)).
a(n) ~ c * n!, where c = A270614 = Product_{k>=1} ((1 + sinh(1/k)) / exp(1/k)) = 0.625635801977949844... . - Vaclav Kotesovec, Mar 20 2016
EXAMPLE
a(2)=1 because we have (12) ((1)(2) does not qualify). a(4)=14 because the following 10 permutations of 4 do not qualify: (1)(2)(3)(4), (14)(2)(3), (1)(24)(3), (1)(2)(34), (13)(2)(4), (13)(24), (1)(23)(4), (14)(23), (12)(3)(4) and (12)(34).
MAPLE
g:=product(1+sinh(x^k/k), k=1..40): gser:=series(g, x=0, 25): seq(factorial(n)*coeff(gser, x, n), n=0..21); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
MATHEMATICA
nn = 25; Range[0, nn]!*CoefficientList[Series[Product[1 + Sinh[x^k/k], {k, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
PROG
(Magma)
m:=40;
f:= func< x | (&*[1 + Sinh(x^j/j): j in [1..m+1]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 18 2023
(SageMath)
m=40
def f(x): return product( 1 + sinh(x^j/j) for j in range(1, m+2) )
def A130263_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A130263_list(m) # G. C. Greubel, Mar 18 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 06 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 24 2007
STATUS
approved