login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218504
E.g.f.: Product_{n>=1} 1/(1 - tanh(x^n/n)).
7
1, 1, 3, 9, 40, 200, 1286, 9002, 74712, 672408, 6892312, 75815432, 925733216, 12034531808, 170656068480, 2559841027200, 41356302857344, 703057148574848, 12752569691858048, 242298824145302912, 4875886476833445888, 102393616013502363648, 2264106940756915715584
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/(1-x) * Product_{n>=1} cosh(x^n/n); see A130268.
a(n) ~ c * n!, where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - Vaclav Kotesovec, Nov 03 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 40*x^4/4! + 200*x^5/5! +...
where A(x) = 1/((1-tanh(x))*(1-tanh(x^2/2))*(1-tanh(x^3/3))*(1-tanh(x^4/4))*...)
Let G(x) = Product_{n>=1} cosh(x^n/n) be the e.g.f. of A130268:
G(x) = 1 + x^2/2! + 4*x^4/4! + 86*x^6/6! + 2696*x^8/8! + 168232*x^10/10! +...
then e.g.f. A(x) = G(x)/(1-x).
MATHEMATICA
nn = 25; Range[0, nn]! * CoefficientList[Series[1/(1 - x)*Product[Cosh[x^k/k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
PROG
(PARI) {a(n)=n!*polcoeff(1/prod(k=1, n, (1-tanh(x^k/k+x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 31 2012
STATUS
approved