login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133189
Number of simple directed graphs on n labeled nodes consisting only of some cycle graphs C_2 and nodes not part of a cycle having directed edges to both nodes in exactly one cycle.
7
1, 0, 1, 3, 9, 40, 210, 1176, 7273, 49932, 372060, 2971540, 25359411, 230364498, 2215550428, 22460391240, 239236043985, 2669869110856, 31134833803728, 378485082644400, 4786085290280275, 62838103267148790, 855122923978737876, 12042364529117844328
OFFSET
0,4
REFERENCES
A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
LINKS
Eric Weisstein's World of Mathematics, Directed Graph
Eric Weisstein's World of Mathematics, Cycle Graph
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A006882(2*k-1) * k^(n-2*k).
E.g.f.: exp(exp(x)*x^2/2). - Geoffrey Critzer, Nov 23 2012
EXAMPLE
a(3) = 3, because there are 3 graphs of the given kind for 3 labeled nodes: 3->1<->2<-3, 2->1<->3<-2, 1->2<->3<-1.
MAPLE
a:= proc(n) option remember; add(binomial(n, k+k)*
doublefactorial(k+k-1) *k^(n-k-k), k=0..floor(n/2))
end:
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
binomial(n-1, j-1) *binomial(j, 2) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 16 2015
MATHEMATICA
nn=20; Range[0, nn]!CoefficientList[Series[Exp[Exp[x]x^2/2], {x, 0, nn}], x] (* Geoffrey Critzer, Nov 23 2012 *)
Table[Sum[BellY[n, k, Binomial[Range[n], 2]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
CROSSREFS
2nd column of A145460, A143398.
Sequence in context: A229244 A218504 A292909 * A020092 A346753 A233533
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 17 2007
STATUS
approved