|
|
A133190
|
|
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).
|
|
1
|
|
|
1, 3, 3, 5, 13, 27, 51, 101, 205, 411, 819, 1637, 3277, 6555, 13107, 26213, 52429, 104859, 209715, 419429, 838861, 1677723, 3355443, 6710885, 13421773, 26843547, 53687091, 107374181, 214748365, 429496731, 858993459, 1717986917, 3435973837
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: (2*x+1)*(x-1)/((2*x-1)*(x^2+1)).
a(n) = (4*2^n + (-1)^floor(n/2)*A010688(n))/5. (End)
a(n) = ((1 - 7*i)*i^n + 8*2^n + (1 + 7*i)*(-i)^n)/10, with n>=0 and i=sqrt(-1). - Paolo P. Lava, Jun 09 2008
|
|
MAPLE
|
A010688 := proc(n) if n mod 2 = 0 then 1; else 7; fi ; end:
|
|
MATHEMATICA
|
LinearRecurrence[{2, -1, 2}, {1, 3, 3}, 40] (* Harvey P. Dale, Jun 22 2022 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|