login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212322
Number of compositions of n such that no two adjacent parts are equal, and the first part is not equal to the last part if there is more than one part.
5
1, 1, 1, 3, 3, 5, 13, 17, 29, 55, 99, 161, 293, 507, 881, 1561, 2727, 4743, 8337, 14579, 25497, 44675, 78173, 136753, 239437, 419077, 733377, 1283701, 2246823, 3932249, 6882603, 12046313, 21083545, 36901587, 64586887, 113042011, 197851265, 346287829, 606086169
OFFSET
0,4
COMMENTS
Also known as cyclic Carlitz compositions.
REFERENCES
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010, pages 87-88.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 200 terms from Jair Taylor)
P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.
FORMULA
G.f.: 1 + sum(k>0: x^k/(1+x^k)^2)/(1-sum(k>0, x^k/(1+x^k))) + sum(k>0, x^(2k)/(1+x^k)).
a(n) ~ c * d^n, where d = 1.750241291718309031249738624639... (see A241902), c = 0.350601274598240344779505805689.... - Vaclav Kotesovec, May 01 2014
EXAMPLE
The cyclic Carlitz compositions of the n = 1...6 are
1;
2;
12, 21, 3;
13, 31, 4;
14, 23, 32, 41,5;
1212, 123, 132, 15, 2121, 213, 231, 24, 312, 321, 42, 51, 6.
MAPLE
# For getting the first M-1 terms, from N. J. A. Sloane, Apr 26 2014
M:=101:
t1:=add(x^i/(1+x^i), i=1..M):
t2:=add(x^i/(1+x^i)^2, i=1..M):
t3:=add(x^(2*i)/(1+x^i), i=1..M):
t0:=t2/(1-t1)+t3:
series(t0, x, 30);
seriestolist(%);
MATHEMATICA
terms = 39;
gf = 1 + Sum[x^k/(1 + x^k)^2, {k, 1, terms}]/(1 - Sum[x^k/(1 + x^k), {k, 1, terms}]) + Sum[x^(2 k)/(1 + x^k), {k, 1, terms}] + O[x]^terms;
CoefficientList[gf, x] (* Jean-François Alcover, Dec 30 2017 *)
PROG
(Sage)
for n in range(15):
Q = []
for comp in Compositions(n) :
if len(comp) == 1 or all(comp[k] != comp[k+1] for k in range(-1, len(comp)-1)):
Q.append(comp)
print(len(Q))
(PARI)
a(n) = { polcoeff(1 + sum(k=1, n, x^k/(1+x^k)^2 + O(x*x^n))/(1-sum(k=1, n, x^k/(1+x^k) + O(x*x^n))) + sum(k=1, n, x^(2*k)/(1+x^k) + O(x*x^n)), n) } \\ Andrew Howroyd, Oct 14 2017
CROSSREFS
Removing restriction on the first and last parts gives the Carlitz compositions, A003242.
Row sums of A293595.
Sequence in context: A320176 A298478 A144419 * A367005 A226921 A133190
KEYWORD
nonn
AUTHOR
Jair Taylor, May 13 2012
STATUS
approved