login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212322 Number of compositions of n such that no two adjacent parts are equal, and the first part is not equal to the last part if there is more than one part. 4
1, 1, 1, 3, 3, 5, 13, 17, 29, 55, 99, 161, 293, 507, 881, 1561, 2727, 4743, 8337, 14579, 25497, 44675, 78173, 136753, 239437, 419077, 733377, 1283701, 2246823, 3932249, 6882603, 12046313, 21083545, 36901587, 64586887, 113042011, 197851265, 346287829, 606086169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also known as cyclic Carlitz compositions.

REFERENCES

Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010, pages 87-88.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 200 terms from Jair Taylor)

P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.

Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.

FORMULA

G.f.: 1 + sum(k>0: x^k/(1+x^k)^2)/(1-sum(k>0, x^k/(1+x^k))) + sum(k>0, x^(2k)/(1+x^k)).

a(n) ~ c * d^n, where d = 1.750241291718309031249738624639... (see A241902), c = 0.350601274598240344779505805689.... - Vaclav Kotesovec, May 01 2014

EXAMPLE

The cyclic Carlitz compositions of the n = 1...6 are

1;

2;

12, 21, 3;

13, 31, 4;

14, 23, 32, 41,5;

1212, 123, 132, 15, 2121, 213, 231, 24, 312, 321, 42, 51, 6.

MAPLE

# For getting the first M-1 terms, from N. J. A. Sloane, Apr 26 2014

M:=101:

t1:=add(x^i/(1+x^i), i=1..M):

t2:=add(x^i/(1+x^i)^2, i=1..M):

t3:=add(x^(2*i)/(1+x^i), i=1..M):

t0:=t2/(1-t1)+t3:

series(t0, x, 30);

seriestolist(%);

MATHEMATICA

terms = 39;

gf = 1 + Sum[x^k/(1 + x^k)^2, {k, 1, terms}]/(1 - Sum[x^k/(1 + x^k), {k, 1, terms}]) + Sum[x^(2 k)/(1 + x^k), {k, 1, terms}] + O[x]^terms;

CoefficientList[gf, x] (* Jean-Fran├žois Alcover, Dec 30 2017 *)

PROG

(Sage)

for n in range(15):

... Q = []

... for comp in Compositions(n) :

...... if len(comp) == 1 or all([ comp[k] != comp[k+1] for k in range(-1, len(comp)-1) ]):

......... Q.append(comp)

... print len(Q), ", ",

(PARI)

a(n) = { polcoeff(1 + sum(k=1, n, x^k/(1+x^k)^2 + O(x*x^n))/(1-sum(k=1, n, x^k/(1+x^k) + O(x*x^n))) + sum(k=1, n, x^(2*k)/(1+x^k) + O(x*x^n)), n) } \\ Andrew Howroyd, Oct 14 2017

CROSSREFS

Removing restriction on the first and last parts gives the Carlitz compositions, A003242.

Row sums of A293595.

Cf. A106369, A241902.

Sequence in context: A320176 A298478 A144419 * A226921 A133190 A052898

Adjacent sequences:  A212319 A212320 A212321 * A212323 A212324 A212325

KEYWORD

nonn

AUTHOR

Jair Taylor, May 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)