OFFSET
0,4
COMMENTS
Also known as cyclic Carlitz compositions.
REFERENCES
Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010, pages 87-88.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 200 terms from Jair Taylor)
P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.
FORMULA
G.f.: 1 + sum(k>0: x^k/(1+x^k)^2)/(1-sum(k>0, x^k/(1+x^k))) + sum(k>0, x^(2k)/(1+x^k)).
a(n) ~ c * d^n, where d = 1.750241291718309031249738624639... (see A241902), c = 0.350601274598240344779505805689.... - Vaclav Kotesovec, May 01 2014
EXAMPLE
The cyclic Carlitz compositions of the n = 1...6 are
1;
2;
12, 21, 3;
13, 31, 4;
14, 23, 32, 41,5;
1212, 123, 132, 15, 2121, 213, 231, 24, 312, 321, 42, 51, 6.
MAPLE
# For getting the first M-1 terms, from N. J. A. Sloane, Apr 26 2014
M:=101:
t1:=add(x^i/(1+x^i), i=1..M):
t2:=add(x^i/(1+x^i)^2, i=1..M):
t3:=add(x^(2*i)/(1+x^i), i=1..M):
t0:=t2/(1-t1)+t3:
series(t0, x, 30);
seriestolist(%);
MATHEMATICA
terms = 39;
gf = 1 + Sum[x^k/(1 + x^k)^2, {k, 1, terms}]/(1 - Sum[x^k/(1 + x^k), {k, 1, terms}]) + Sum[x^(2 k)/(1 + x^k), {k, 1, terms}] + O[x]^terms;
CoefficientList[gf, x] (* Jean-François Alcover, Dec 30 2017 *)
PROG
(Sage)
for n in range(15):
Q = []
for comp in Compositions(n) :
if len(comp) == 1 or all(comp[k] != comp[k+1] for k in range(-1, len(comp)-1)):
Q.append(comp)
print(len(Q))
(PARI)
a(n) = { polcoeff(1 + sum(k=1, n, x^k/(1+x^k)^2 + O(x*x^n))/(1-sum(k=1, n, x^k/(1+x^k) + O(x*x^n))) + sum(k=1, n, x^(2*k)/(1+x^k) + O(x*x^n)), n) } \\ Andrew Howroyd, Oct 14 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jair Taylor, May 13 2012
STATUS
approved