login
A293595
Triangle read by rows: T(n,k) = number of compositions of n into k parts such that no two cyclically adjacent parts are equal.
3
1, 1, 0, 1, 2, 0, 1, 2, 0, 0, 1, 4, 0, 0, 0, 1, 4, 6, 2, 0, 0, 1, 6, 6, 4, 0, 0, 0, 1, 6, 12, 10, 0, 0, 0, 0, 1, 8, 18, 16, 10, 2, 0, 0, 0, 1, 8, 24, 40, 20, 6, 0, 0, 0, 0, 1, 10, 30, 52, 50, 18, 0, 0, 0, 0, 0, 1, 10, 42, 84, 90, 50, 14, 2, 0, 0, 0, 0
OFFSET
1,5
COMMENTS
Compositions of length 1 are included.
See theorem 4 in Hadjicostas reference for generating function.
LINKS
P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
FORMULA
G.f.: (Sum_{j>=1} x^(2*j)*y^2/(1+x^j*y)) + (Sum_{j>=1} x^j*y/(1+x^j*y)^2) / (1 - Sum_{j>=1} x^j*y/(1+x^j*y)).
EXAMPLE
Triangle begins:
1;
1, 0;
1, 2, 0;
1, 2, 0, 0;
1, 4, 0, 0, 0;
1, 4, 6, 2, 0, 0;
1, 6, 6, 4, 0, 0, 0;
1, 6, 12, 10, 0, 0, 0, 0;
1, 8, 18, 16, 10, 2, 0, 0, 0;
1, 8, 24, 40, 20, 6, 0, 0, 0, 0;
...
Case n=6:
The included compositions are:
k=1: 6; => T(6,1) = 1
k=2: 15, 24, 42, 51; => T(6,2) = 4
k=3: 123, 132, 213, 231, 312, 321; => T(6,3) = 6
k=4: 1212, 2121; => T(6,4) = 2
MATHEMATICA
max = 10; gf = Sum[x^(2*j)*y^2/(1 + x^j*y), {j, 1, max}] + Sum[x^j*y/(1 + x^j*y)^2, {j, 1, max}]/(1 - Sum[ x^j*y/(1 + x^j*y), {j, 1, max}]) + O[x]^(max+1) + O[y]^(max+1) // Normal // Expand;
T[n_, k_] := SeriesCoefficient[gf, {x, 0, n}, {y, 0, k}];
Table[T[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2018 *)
PROG
(PARI)
gf(n, y) = {my(A=sum(j=1, n, x^(2*j)*y^2/(1+x^j*y) + O(x*x^n)),
B=sum(j=1, n, x^j*y/(1+x^j*y)^2 + O(x*x^n)),
C=sum(j=1, n, x^j*y/(1+x^j*y) + O(x*x^n)));
A + B/(1-C)}
for(n=1, 10, my(p=polcoeff(gf(n, y), n)); for(k=1, n, print1(polcoeff(p, k), ", ")); print)
CROSSREFS
Row sums are in A212322.
Sequence in context: A079644 A072705 A072574 * A261249 A058650 A112177
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Oct 12 2017
STATUS
approved