login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293598 L.g.f.: Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ). 4
1, 3, 5, 7, 12, 11, 26, 15, 51, 19, 91, 23, 155, 27, 232, 62, 341, 35, 592, 39, 656, 344, 870, 47, 1820, 51, 1431, 1441, 1843, 59, 4758, 63, 2925, 4489, 3197, 71, 11899, 75, 4466, 11376, 7650, 83, 23052, 87, 12816, 25025, 7936, 95, 57133, 99, 10706, 49131, 37220, 107, 79570, 2146, 62828, 89263, 15951, 119, 228096, 123, 19500, 152146, 169033, 18864, 218253, 135, 267972, 246308, 75153, 143, 724159, 147, 33227, 490146, 629034, 155, 512448, 159 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..2050

EXAMPLE

L.g.f.: A(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...

which may be written as

A(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...

The coefficient of x^(2^n+1)/(2^n+1) in A(x) for n>=1 begins:

[3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].

MATHEMATICA

nmax = 80; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2*nmax + 1}], {x, 0, 2*nmax + 1}], x] * Range[0, 2*nmax + 1])[[2*n]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 15 2017 *)

PROG

(PARI) {a(n) = my(A, Ox = O(x^(2*n+1)));

A = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );

(2*n-1)*polcoeff(A, 2*n-1)}

for(n=1, 80, print1(a(n), ", "))

CROSSREFS

Cf. A293129, A293597, A293599.

Sequence in context: A262962 A321367 A121976 * A243179 A207459 A241515

Adjacent sequences:  A293595 A293596 A293597 * A293599 A293600 A293601

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 22:37 EST 2019. Contains 329782 sequences. (Running on oeis4.)