login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293598
L.g.f.: Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ).
4
1, 3, 5, 7, 12, 11, 26, 15, 51, 19, 91, 23, 155, 27, 232, 62, 341, 35, 592, 39, 656, 344, 870, 47, 1820, 51, 1431, 1441, 1843, 59, 4758, 63, 2925, 4489, 3197, 71, 11899, 75, 4466, 11376, 7650, 83, 23052, 87, 12816, 25025, 7936, 95, 57133, 99, 10706, 49131, 37220, 107, 79570, 2146, 62828, 89263, 15951, 119, 228096, 123, 19500, 152146, 169033, 18864, 218253, 135, 267972, 246308, 75153, 143, 724159, 147, 33227, 490146, 629034, 155, 512448, 159
OFFSET
1,2
LINKS
EXAMPLE
L.g.f.: A(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...
which may be written as
A(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
The coefficient of x^(2^n+1)/(2^n+1) in A(x) for n>=1 begins:
[3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].
MATHEMATICA
nmax = 80; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2*nmax + 1}], {x, 0, 2*nmax + 1}], x] * Range[0, 2*nmax + 1])[[2*n]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 15 2017 *)
PROG
(PARI) {a(n) = my(A, Ox = O(x^(2*n+1)));
A = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
(2*n-1)*polcoeff(A, 2*n-1)}
for(n=1, 80, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2017
STATUS
approved