login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293599 The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293598 for n>=1. 4
3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, 3270933679995185, 344648907850020294305, 20381496562418327375031168210529, 303229033555187108276527297692992345985345, 533360801574481336406792124161160375221861972273961952144925889, 331572178130571824652402094592695034861147899073590997231695381294750188182312600193 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The l.g.f. of A293598 is Sum_{n>=1} x^((2*n-1)^2)/((2*n-1)*(1 - x^(2*n))^(2*n-1)).

The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293597 equals 1 - a(n) for n>=2.

What is the rate of growth of this sequence?

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 1..19

EXAMPLE

L.g.f. of A293598: Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...

Explicitly,

Q(x) = x + (3)*x^3/3 + (5)*x^5/5 + 7*x^7/7 + (12)*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + (51)*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + (341)*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + (2925)*x^65/65 +...

This sequence equals the coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1.

MATHEMATICA

nmax = 10; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2^nmax + 1}], {x, 0, 2^nmax + 1}], x] * Range[0, 2^nmax + 1])[[2^n + 2]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 15 2017 *)

PROG

(PARI) {A293598(n) = my(Q, Ox = O(x^(2*n+1)));

Q = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );

(2*n-1)*polcoeff(Q, 2*n-1)}

for(n=0, 15, print1(A293598(2^n+1), ", "))

CROSSREFS

Cf. A293129, A293597, A293598.

Sequence in context: A307142 A291936 A307146 * A156436 A276735 A099791

Adjacent sequences:  A293596 A293597 A293598 * A293600 A293601 A293602

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)