login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293599
The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293598 for n>=1.
4
3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, 3270933679995185, 344648907850020294305, 20381496562418327375031168210529, 303229033555187108276527297692992345985345, 533360801574481336406792124161160375221861972273961952144925889, 331572178130571824652402094592695034861147899073590997231695381294750188182312600193
OFFSET
1,1
COMMENTS
The l.g.f. of A293598 is Sum_{n>=1} x^((2*n-1)^2)/((2*n-1)*(1 - x^(2*n))^(2*n-1)).
The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293597 equals 1 - a(n) for n>=2.
What is the rate of growth of this sequence?
LINKS
EXAMPLE
L.g.f. of A293598: Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
Explicitly,
Q(x) = x + (3)*x^3/3 + (5)*x^5/5 + 7*x^7/7 + (12)*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + (51)*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + (341)*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + (2925)*x^65/65 +...
This sequence equals the coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1.
MATHEMATICA
nmax = 10; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2^nmax + 1}], {x, 0, 2^nmax + 1}], x] * Range[0, 2^nmax + 1])[[2^n + 2]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 15 2017 *)
PROG
(PARI) {A293598(n) = my(Q, Ox = O(x^(2*n+1)));
Q = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
(2*n-1)*polcoeff(Q, 2*n-1)}
for(n=0, 15, print1(A293598(2^n+1), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2017
STATUS
approved