login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293602 G.f.: Product_{n=-oo..+oo} ( 1 + x^n*(1 - x^n)^n ). 3
-2, -4, -6, -12, -14, -22, -30, -40, -38, -44, -64, -54, -40, 16, 12, 54, 94, 248, 370, 672, 754, 932, 1112, 1360, 2388, 2684, 3508, 4388, 4452, 4240, 7342, 7538, 9852, 14268, 19268, 16892, 22950, 24514, 24854, 41138, 50750, 54974, 89336, 117050, 103586, 140074, 153180, 147910, 236252, 267510, 274156, 520150, 515664, 568144, 906496, 834244, 552372, 1130104, 1142566, 933698, 1772950, 1915700 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Compare g.f. to: Sum_{n=-oo..+oo} x^n*(1 - x^n)^n = 0.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..520

FORMULA

G.f.: A(x) = P(x) * Q(x) where

P(x) = Product_{n>=0} ( 1 + x^n*(1 - x^n)^n ),

Q(x) = Product_{n>=1} ( 1 + (-1)^n * x^(n^2-n)/(1 - x^n)^n ).

EXAMPLE

G.f.: A(x) = -2*x - 4*x^2 - 6*x^3 - 12*x^4 - 14*x^5 - 22*x^6 - 30*x^7 - 40*x^8 - 38*x^9 - 44*x^10 - 64*x^11 - 54*x^12 - 40*x^13 + 16*x^14 + 12*x^15 + 54*x^16 + 94*x^17 + 248*x^18 + 370*x^19 + 672*x^20 + 754*x^21 + 932*x^22 + 1112*x^23 + 1360*x^24 + 2388*x^25 + 2684*x^26 + 3508*x^27 + 4388*x^28 + 4452*x^29 + 4240*x^30 +...

where

A(x) = P(x) * Q(x) where

P(x) = 2 * (1 + x*(1-x)) * (1 + x^2*(1-x^2)^2) * (1 + x^3*(1-x^3)^3) * (1 + x^4*(1-x^4)^4) * (1 + x^5*(1-x^5)^5) *...* ( 1 + x^n*(1 - x^n)^n ) *...

Q(x) = (1 - 1/(1-x)) * (1 + x^2/(1-x^2)^2) * (1 - x^6/(1-x^3)^3) * (1 + x^12/(1-x^4)^4) * (1 - x^20/(1-x^5)^5) *...* (1 + (-1)^n * x^(n^2-n)/(1 - x^n)^n ) *...

Explicitly,

P(x) = 2 + 2*x + 4*x^3 - 2*x^4 + 6*x^6 - 2*x^7 - 10*x^8 + 22*x^10 - 18*x^11 - 36*x^13 - 4*x^14 + 98*x^15 - 10*x^16 - 104*x^17 + 30*x^18 - 108*x^19 - 40*x^20 + 448*x^21 - 16*x^22 - 200*x^23 - 214*x^24 - 148*x^25 - 586*x^26 + 718*x^27 + 1374*x^28 - 224*x^29 + 104*x^30 +...

Q(x) = -x - x^2 - 2*x^3 - 2*x^4 - 4*x^5 - 4*x^6 - 6*x^7 - 6*x^8 - 9*x^9 - 6*x^10 - 9*x^11 - 6*x^12 - 4*x^13 + 2*x^14 + 4*x^15 + 23*x^16 + 26*x^17 + 48*x^18 + 72*x^19 + 107*x^20 + 123*x^21 + 195*x^22 + 232*x^23 + 317*x^24 + 376*x^25 + 515*x^26 + 595*x^27 + 817*x^28 + 912*x^29 + 1215*x^30 +...

MATHEMATICA

terms = 62; Product[If[n == 0, 2, (1 + x^n*(1 - x^n)^n)], {n, -terms, terms}] + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* Jean-Fran├žois Alcover, Nov 04 2017 *)

PROG

(PARI) {a(n) = my(A); A = prod(m=-n-1, n+1, (1 + x^m*(1 - x^m)^m + x*O(x^n)) ); polcoeff(A, n)}

for(n=1, 60, print1(a(n), ", "))

CROSSREFS

Cf. A293603, A295131.

Sequence in context: A061012 A161337 A050055 * A015632 A111084 A015636

Adjacent sequences:  A293599 A293600 A293601 * A293603 A293604 A293605

KEYWORD

sign,look

AUTHOR

Paul D. Hanna, Oct 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)