Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 18 2017 07:35:31
%S 3,5,12,51,341,2925,169033,33445209,21619038033,3270933679995185,
%T 344648907850020294305,20381496562418327375031168210529,
%U 303229033555187108276527297692992345985345,533360801574481336406792124161160375221861972273961952144925889,331572178130571824652402094592695034861147899073590997231695381294750188182312600193
%N The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293598 for n>=1.
%C The l.g.f. of A293598 is Sum_{n>=1} x^((2*n-1)^2)/((2*n-1)*(1 - x^(2*n))^(2*n-1)).
%C The coefficient of x^(2^n+1)/(2^n+1) in the l.g.f. of A293597 equals 1 - a(n) for n>=2.
%C What is the rate of growth of this sequence?
%H Vaclav Kotesovec, <a href="/A293599/b293599.txt">Table of n, a(n) for n = 1..19</a>
%e L.g.f. of A293598: Q(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
%e Explicitly,
%e Q(x) = x + (3)*x^3/3 + (5)*x^5/5 + 7*x^7/7 + (12)*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + (51)*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + (341)*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + (2925)*x^65/65 +...
%e This sequence equals the coefficient of x^(2^n+1)/(2^n+1) in Q(x) for n>=1.
%t nmax = 10; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2^nmax + 1}], {x, 0, 2^nmax + 1}], x] * Range[0, 2^nmax + 1])[[2^n + 2]], {n, 1, nmax}] (* _Vaclav Kotesovec_, Oct 15 2017 *)
%o (PARI) {A293598(n) = my(Q, Ox = O(x^(2*n+1)));
%o Q = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
%o (2*n-1)*polcoeff(Q, 2*n-1)}
%o for(n=0, 15, print1(A293598(2^n+1), ", "))
%Y Cf. A293129, A293597, A293598.
%K nonn
%O 1,1
%A _Paul D. Hanna_, Oct 12 2017