login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218507
Number of partitions of n in which any two parts differ by at most 5.
4
1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 37, 48, 62, 78, 98, 121, 149, 181, 219, 262, 313, 370, 436, 510, 595, 690, 797, 916, 1050, 1198, 1364, 1545, 1747, 1968, 2212, 2479, 2771, 3089, 3437, 3814, 4226, 4669, 5151, 5670, 6232, 6837, 7487, 8185, 8936, 9739, 10602
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,0,-2,-2,1,1,2,1,1,-2,-2,0,0,0,1,1,-1).
FORMULA
G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..5} (1-x^(i+j)).
G.f.: (x^20 -x^19 -x^18 +x^15 +x^14 +x^13 -x^12 -x^11 -x^10 +x^7 +x^6 -x^5 +1) / ((x -1)^6*(x +1)^2*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)^2). - Colin Barker, Mar 05 2015
MAPLE
b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k))))
end:
a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 5), i=1..n):
seq(a(n), n=0..80);
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 0, -2, -2, 1, 1, 2, 1, 1, -2, -2, 0, 0, 0, 1, 1, -1}, {1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 37, 48, 62, 78, 98, 121, 149, 181, 219, 262, 313}, 60] (* Harvey P. Dale, Jan 18 2016 *)
PROG
(PARI) Vec((x^20-x^19-x^18+x^15+x^14+x^13-x^12-x^11-x^10+x^7+x^6-x^5+1)/((x-1)^6*(x+1)^2*(x^2+1)*(x^2+x+1)*(x^4+x^3+x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 05 2015
CROSSREFS
Column k=5 of A194621.
Sequence in context: A319472 A357660 A309099 * A339672 A026813 A008636
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 31 2012
STATUS
approved