login
A218510
Number of partitions of n in which any two parts differ by at most 8.
4
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 96, 127, 161, 208, 260, 330, 407, 509, 621, 765, 925, 1127, 1350, 1627, 1934, 2310, 2725, 3227, 3782, 4446, 5178, 6044, 7000, 8122, 9355, 10791, 12370, 14195, 16196, 18494, 21012, 23887, 27029, 30596, 34492, 38894
OFFSET
0,3
LINKS
FORMULA
G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..8} (1-x^(i+j)).
MAPLE
b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k))))
end:
a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 8), i=1..n):
seq(a(n), n=0..80);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]];
a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 8], {i, 1, n}];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *)
CROSSREFS
Column k=8 of A194621.
Sequence in context: A184645 A053691 A242696 * A026816 A008639 A341914
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 31 2012
STATUS
approved