OFFSET
0,3
COMMENTS
For n > 9: also number of partitions of n into parts <= 10: a(n) = A026820(n, 10). - Reinhard Zumkeller, Jan 21 2010
REFERENCES
A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 359
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 1, 1, 1, 2, 0, 0, -1, -1, -1, -1, -3, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, -3, -1, -1, -1, -1, 0, 0, 2, 1, 1, 1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: 1/Product_{k=1..10} (1 - x^k). - David Neil McGrath, Apr 29 2015
a(n) = a(n-10) + A008638(n). - Vladimír Modrák, Sep 29 2020
MATHEMATICA
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 10} ], {x, 0, 60} ], x ]
PROG
(PARI) Vec(1/prod(k=1, 10, 1-x^k)+O(x^99)) \\ Charles R Greathouse IV, May 06 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved