login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008639
Number of partitions of n into at most 10 parts.
7
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 128, 164, 212, 267, 340, 423, 530, 653, 807, 984, 1204, 1455, 1761, 2112, 2534, 3015, 3590, 4242, 5013, 5888, 6912, 8070, 9418, 10936, 12690, 14663, 16928, 19466, 22367, 25608, 29292, 33401, 38047
OFFSET
0,3
COMMENTS
For n > 9: also number of partitions of n into parts <= 10: a(n) = A026820(n, 10). - Reinhard Zumkeller, Jan 21 2010
REFERENCES
A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 1, 1, 1, 2, 0, 0, -1, -1, -1, -1, -3, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, -3, -1, -1, -1, -1, 0, 0, 2, 1, 1, 1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
G.f.: 1/Product_{k=1..10} (1 - x^k). - David Neil McGrath, Apr 29 2015
a(n) = a(n-10) + A008638(n). - Vladimír Modrák, Sep 29 2020
MATHEMATICA
CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 10} ], {x, 0, 60} ], x ]
PROG
(PARI) Vec(1/prod(k=1, 10, 1-x^k)+O(x^99)) \\ Charles R Greathouse IV, May 06 2015
CROSSREFS
Essentially same as A026816.
a(n) = A008284(n + 10, 10), n >= 0.
Cf. A266778 (first differences), A288345 (partial sums).
Sequence in context: A242696 A218510 A026816 * A341914 A008633 A347576
KEYWORD
nonn,easy
STATUS
approved