OFFSET
0,5
COMMENTS
The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i).
Note that this is the root system A_k not the alternating group Alt_k.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -2, -1, 0, 1, 3, 3, 3, 2, 1, 0, -1, -4, -4, -4, -3, -2, 0, 2, 3, 4, 4, 4, 1, 0, -1, -2, -3, -3, -3, -1, 0, 1, 2, 1, 1, 1, 1, 0, 0, -1, -1, -1, 0, 1).
FORMULA
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)).
MAPLE
seq(coeff(series( mul(1/(1-x^j), j=2..10), x, n+1), x, n), n = 0..70); # G. C. Greubel, Feb 02 2020
MATHEMATICA
CoefficientList[Series[Product[1/(1-x^j), {j, 2, 10}], {x, 0, 70}], x] (* G. C. Greubel, Feb 02 2020 *)
LinearRecurrence[{0, 1, 1, 1, 0, 0, -1, -1, -1, -1, -2, -1, 0, 1, 3, 3, 3, 2, 1, 0, -1, -4, -4, -4, -3, -2, 0, 2, 3, 4, 4, 4, 1, 0, -1, -2, -3, -3, -3, -1, 0, 1, 2, 1, 1, 1, 1, 0, 0, -1, -1, -1, 0, 1}, {1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 13, 20, 22, 31, 36, 48, 55, 73, 83, 107, 123, 154, 177, 220, 251, 306, 351, 422, 481, 575, 652, 771, 875, 1024, 1158, 1348, 1518, 1754, 1973, 2265, 2538, 2901, 3241, 3684, 4109, 4646, 5167, 5823, 6457, 7246, 8020, 8965, 9898}, 70] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) Vec( prod(j=2, 10, 1/(1-x^j)) +O('x^70) ) \\ G. C. Greubel, Feb 02 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( &*[1/(1-x^j): j in [2..10]] )); // G. C. Greubel, Feb 02 2020
(Sage)
def A266778_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( product(1/(1-x^j) for j in (2..10)) ).list()
A266778_list(70) # G. C. Greubel, Feb 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved