The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266776 Molien series for invariants of finite Coxeter group A_7. 11
 1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k. REFERENCES J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59. LINKS Ray Chandler, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -2, -2, -1, 1, 2, 2, 3, 2, 1, -1, -2, -3, -2, -2, -1, 1, 2, 2, 1, 1, 0, 0, -1, -1, -1, 0, 1). FORMULA G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)). MATHEMATICA CoefficientList[Series[1/Product[1-t^k, {k, 2, 8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *) PROG (PARI) t='t+O('t^40); Vec(1/prod(k=2, 8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018 (MAGMA) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018 CROSSREFS Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781. Sequence in context: A197122 A064410 A304178 * A062896 A025065 A306664 Adjacent sequences:  A266773 A266774 A266775 * A266777 A266778 A266779 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 21:30 EST 2020. Contains 331128 sequences. (Running on oeis4.)