OFFSET
0,5
COMMENTS
The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -2, -2, -1, 1, 2, 2, 3, 2, 1, -1, -2, -3, -2, -2, -1, 1, 2, 2, 1, 1, 0, 0, -1, -1, -1, 0, 1).
FORMULA
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).
MATHEMATICA
CoefficientList[Series[1/Product[1-t^k, {k, 2, 8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
PROG
(PARI) t='t+O('t^40); Vec(1/prod(k=2, 8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
(Magma) m:=40; R<t>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved