login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266776
Molien series for invariants of finite Coxeter group A_7.
12
1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065
OFFSET
0,5
COMMENTS
The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -2, -2, -1, 1, 2, 2, 3, 2, 1, -1, -2, -3, -2, -2, -1, 1, 2, 2, 1, 1, 0, 0, -1, -1, -1, 0, 1).
FORMULA
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).
MATHEMATICA
CoefficientList[Series[1/Product[1-t^k, {k, 2, 8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
PROG
(PARI) t='t+O('t^40); Vec(1/prod(k=2, 8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
(Magma) m:=40; R<t>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018
CROSSREFS
Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Sequence in context: A197122 A064410 A304178 * A371514 A363214 A062896
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved