OFFSET
0,5
COMMENTS
The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i).
Note that this is the root system A_k, not the alternating group Alt_k.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,0,-1,-1,-1,-2,-2,0,1,2,3,3,2,1,0,-2,-3,-4,-3,-2,0,1,2,3,3,2,1,0,-2,-2,-1,-1,-1,0,0,1,1,1,0,-1).
FORMULA
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)).
MAPLE
seq(coeff(series( mul(1/(1-x^j), j=2..9), x, n+1), x, n), n = 0..70); # G. C. Greubel, Feb 01 2020
MATHEMATICA
CoefficientList[Series[Product[1/(1-x^j), {j, 2, 9}], {x, 0, 70}], x] (* G. C. Greubel, Feb 01 2020 *)
PROG
(PARI) Vec( prod(j=2, 9, 1/(1-x^j)) + O('x^70) ) \\ G. C. Greubel, Feb 01 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (&*[1/(1-x^j): j in [2..9]]) )); // G. C. Greubel, Feb 01 2020
(Sage)
def A266777_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( product(1/(1-x^j) for j in (2..9)) ).list()
A266777_list(70) # G. C. Greubel, Feb 01 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved