login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266777 Molien series for invariants of finite Coxeter group A_8. 3
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 19, 21, 29, 34, 44, 51, 66, 75, 95, 110, 134, 155, 189, 215, 258, 296, 349, 398, 468, 529, 617, 698, 804, 907, 1042, 1167, 1332, 1492, 1690, 1886, 2130, 2366, 2660, 2951, 3298, 3649, 4069, 4484, 4981, 5482, 6064, 6657, 7347, 8041, 8849, 9670, 10605, 11565, 12659, 13769, 15034, 16330, 17782, 19278, 20955 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i).

Note that this is the root system A_k not the alternating group Alt_k.

REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

LINKS

Ray Chandler, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -1, -2, -2, 0, 1, 2, 3, 3, 2, 1, 0, -2, -3, -4, -3, -2, 0, 1, 2, 3, 3, 2, 1, 0, -2, -2, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1).

Index entries for Molien series

FORMULA

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)).

CROSSREFS

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Sequence in context: A232047 A060029 A100471 * A248518 A095700 A035944

Adjacent sequences:  A266774 A266775 A266776 * A266778 A266779 A266780

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 11 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 06:37 EST 2020. Contains 331033 sequences. (Running on oeis4.)