The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248518 Number of partitions of n into parts > 0 without 1 as digit, cf. A052383. 2
 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 19, 21, 29, 34, 44, 51, 66, 75, 96, 110, 136, 157, 193, 220, 267, 307, 367, 421, 501, 571, 677, 772, 905, 1033, 1207, 1371, 1595, 1812, 2096, 2377, 2741, 3101, 3564, 4028, 4608, 5203, 5938, 6688, 7612, 8564, 9719, 10919 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Note that the definition says "1 as a DIGIT", not "1 as a PART". - N. J. A. Sloane, Jun 28 2017 LINKS Table of n, a(n) for n=0..53. EXAMPLE The full list of partitions of 10 is as follows: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 1, 1, 2, 2], [1, 1, 1, 1, 2, 2, 2], [1, 1, 2, 2, 2, 2], [2, 2, 2, 2, 2], [1, 1, 1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 1, 2, 3], [1, 1, 1, 2, 2, 3], [1, 2, 2, 2, 3], [1, 1, 1, 1, 3, 3], [1, 1, 2, 3, 3], [2, 2, 3, 3], [1, 3, 3, 3], [1, 1, 1, 1, 1, 1, 4], [1, 1, 1, 1, 2, 4], [1, 1, 2, 2, 4], [2, 2, 2, 4], [1, 1, 1, 3, 4], [1, 2, 3, 4], [3, 3, 4], [1, 1, 4, 4], [2, 4, 4], [1, 1, 1, 1, 1, 5], [1, 1, 1, 2, 5], [1, 2, 2, 5], [1, 1, 3, 5], [2, 3, 5], [1, 4, 5], [5, 5], [1, 1, 1, 1, 6], [1, 1, 2, 6], [2, 2, 6], [1, 3, 6], [4, 6], [1, 1, 1, 7], [1, 2, 7], [3, 7], [1, 1, 8], [2, 8], [1, 9], [10]] If we excluse those that have a 1 in one of the parts, 11 partitions are left: [[2, 2, 2, 2, 2], [2, 2, 3, 3], [2, 2, 2, 4], [3, 3, 4], [2, 4, 4], [2, 3, 5], [5, 5], [2, 2, 6], [4, 6], [3, 7], [2, 8]]. So a(10) = 11. - N. J. A. Sloane, Jun 28 2017 a(11) = #[9+2, 8+3, 7+4, 7+2+2, 6+5, 6+3+2, 5+4+2, 5+3+3, 5+2+2+2, 4+4+3, 4+3+2+2, 3+3+3+2, 3+2+2+2+2} = 13; a(12) = #{9+3, 8+4, 8+2+2, 7+5, 7+3+2, 6+6, 6+4+2, 6+3+3, 6+2+2+2, 5+5+2, 5+4+3, 5+3+2+2, 4+4+4, 4+4+2+2, 4+3+3+2, 4+2+2+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 19. MATHEMATICA Table[Length[Select[IntegerPartitions[n], !MemberQ[Flatten[ IntegerDigits/@#], 1]&]], {n, 0, 60}] (* Harvey P. Dale, Jun 28 2017 *) PROG (Haskell) a248518 = p \$ tail a052383_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m CROSSREFS Cf. A052383, A248519. Sequence in context: A060029 A100471 A266777 * A095700 A339404 A035944 Adjacent sequences: A248515 A248516 A248517 * A248519 A248520 A248521 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Oct 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 08:04 EDT 2024. Contains 373629 sequences. (Running on oeis4.)