login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248521
Numbers k such that floor(cot(Pi/(2k+2))) = floor(cot(Pi/(2k))) + 1.
2
1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 18, 20, 22, 23, 25, 26, 28, 29, 31, 33, 34, 36, 37, 39, 40, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 98, 100, 102
OFFSET
1,2
LINKS
FORMULA
Conjecture: a(n) ~ Pi*n/2. - Vaclav Kotesovec, Oct 09 2014
EXAMPLE
([cot(Pi/(2k+2))] = [cot(Pi/(2k))]) = (1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0,...), so that A248520 = (2, 5, 8, 10, 13, 16, ...) and A248521 = (1, 3, 4, 6, 7, 9, 11, ...).
MATHEMATICA
z = 240; v = Table[Floor[Cot[Pi/(2 n)]], {n, 1, z}];
Flatten[Position[Differences[v], 0]] (* A248520 *)
Flatten[Position[Differences[v], 1]] (* A248521 *)
nmax=100; Select[Range[nmax], Floor[Cot[Pi/(2#+2)]]==Floor[Cot[Pi/(2#)]]+1&] (* Vaclav Kotesovec, Oct 09 2014 *)
CROSSREFS
Sequence in context: A018825 A247779 A243989 * A059555 A186539 A054385
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 08 2014
STATUS
approved