OFFSET
1,2
COMMENTS
It seems to be for n >= 10 the first difference will be periodic of {1, 2, 1, 2, 1, 2, 2}.
LINKS
Kival Ngaokrajang, Illustration of initial terms
Eric Weisstein's World of Mathematics, Lune
FORMULA
a(n) = floor(Pi/area) where area = 2*d + k1 - k2, d = (1/4)*(c^2*(2+c)*(2-c))^(1/2), k1 = arccos(-c^2/(2*c)), k2 = arccos(c^2/(2*c)).
Empirical g.f.: x*(x^14-x^13+2*x^6+2*x^5+x^4+2*x^3+x^2+2*x+1) / ((x-1)^2*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jun 17 2014
PROG
(PARI)
{
for (n=1, 100, c=1/n;
d = (1/4)*(c^2*(2+c)*(2-c))^(1/2);
k1 = acos(-c^2/(2*c));
k2 = acos(c^2/(2*c));
area = 2*d+k1-k2;
print1(floor(Pi/area), ", ")
)
}
CROSSREFS
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jun 17 2014
STATUS
approved