The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243987 Triangle read by rows: T(n, k) is the number of divisors of n that are less than or equal to k for 1 <= k <= n. 5
 1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS This triangular sequence T(n,k) generalizes sequence A000005, the number of divisors of n; in particular, A000005(n) = T(n,n). Also, for prime p, T(p,k) = 1 when k < p and T(p,p) = 2. LINKS Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened Dennis P. Walsh, Notes on counting the divisors of n FORMULA T(n,1) = 1; T(n,n) = A000005(n). T(n,k) = coefficient of the x^n term in the expansion of Sum(x^j/(1-x^j), j=1..k). T(n,k) = Sum_{j=1..k} A051731(n,j). - Reinhard Zumkeller, Apr 22 2015 EXAMPLE T(6,4)=3 since there are 3 divisors of 6 that are less than or equal to 4, namely, 1, 2 and 3. T(n,k) as a triangle, n=1..15: 1, 1, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 4, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 MAPLE T:=(n, k)->1/n!*eval(diff(sum(x^j/(1-x^j), j=1..k), x\$n), x=0): seq(seq(T(n, k), k=1..n), n=1..10); # Alternative: IversonBrackets := expr -> subs(true=1, false=0, evalb(expr)): T := (n, k) -> add(IversonBrackets(irem(n, j) = 0), j = 1..k): for n from 1 to 19 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Jan 02 2021 PROG (PARI) T(n, k) = sumdiv(n, d, d<=k); \\ Michel Marcus, Jun 17 2014 (Haskell) a243987 n k = a243987_tabl !! (n-1) !! (k-1) a243987_row n = a243987_tabl !! (n-1) a243987_tabl = map (scanl1 (+)) a051731_tabl -- Reinhard Zumkeller, Apr 22 2015 CROSSREFS Cf. A000005 (diagonal), A000012 (first column), A081307 (row sums), A027750 (divisors of n). Cf. A138553, A051731. Cf. A340260, A340261. Sequence in context: A116674 A025836 A029319 * A050205 A281530 A340260 Adjacent sequences: A243984 A243985 A243986 * A243988 A243989 A243990 KEYWORD nonn,tabl AUTHOR Dennis P. Walsh, Jun 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)