login
A081307
a(n) = (n+1)*tau(n) - sigma(n).
4
1, 3, 4, 8, 6, 16, 8, 21, 17, 26, 12, 50, 14, 36, 40, 54, 18, 75, 20, 84, 56, 56, 24, 140, 47, 66, 72, 118, 30, 176, 32, 135, 88, 86, 96, 242, 38, 96, 104, 238, 42, 248, 44, 186, 198, 116, 48, 366, 93, 213, 136, 220
OFFSET
1,2
COMMENTS
Old name was: Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
Number of positive integer pairs (s,t) with s <= t <= n, such that s|n. For example, when n = 6, the 16 pairs are (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (6,6). - Wesley Ivan Hurt, Nov 15 2021
FORMULA
Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
a(n) = Sum_{k=1..n} k*A113998(n,k). - Philippe Deléham, Feb 03 2007
MATHEMATICA
Table[(n + 1) DivisorSigma[0, n] - DivisorSigma[1, n], {n, 100}] (* Wesley Ivan Hurt, Nov 15 2021 *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, sum(l=1, k, 1/(1-x^l)), x*O(x^n)), n))
CROSSREFS
Cf. A000005 (tau), A000203 (sigma), A094471, A113998.
Sequence in context: A347228 A330575 A079787 * A344225 A081543 A328876
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 20 2003
EXTENSIONS
Name changed by Wesley Ivan Hurt, Nov 16 2021 using formula from Vladeta Jovovic, Jan 22 2005
STATUS
approved