OFFSET
1,2
COMMENTS
Old name was: Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
Number of positive integer pairs (s,t) with s <= t <= n, such that s|n. For example, when n = 6, the 16 pairs are (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6), (6,6). - Wesley Ivan Hurt, Nov 15 2021
FORMULA
Sum_{k=1..n} Sum_{m=1..k} 1/(1-x^m).
a(n) = Sum_{k=1..n} k*A113998(n,k). - Philippe Deléham, Feb 03 2007
MATHEMATICA
Table[(n + 1) DivisorSigma[0, n] - DivisorSigma[1, n], {n, 100}] (* Wesley Ivan Hurt, Nov 15 2021 *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, sum(l=1, k, 1/(1-x^l)), x*O(x^n)), n))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 20 2003
EXTENSIONS
Name changed by Wesley Ivan Hurt, Nov 16 2021 using formula from Vladeta Jovovic, Jan 22 2005
STATUS
approved