The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330575 a(n) = n + Sum_{d|n and d1; a(1) = 1. 6
 1, 3, 4, 8, 6, 14, 8, 20, 14, 20, 12, 42, 14, 26, 26, 48, 18, 54, 20, 58, 34, 38, 24, 116, 32, 44, 46, 74, 30, 104, 32, 112, 50, 56, 50, 176, 38, 62, 58, 156, 42, 132, 44, 106, 96, 74, 48, 304, 58, 112, 74, 122, 54, 190, 74, 196, 82, 92, 60, 346, 62, 98, 124, 256, 86 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See Table 2 p. 11. FORMULA a(p) = p+1 for p prime. a(n) = n + A255242(n). - Rémy Sigrist, Dec 18 2019 G.f. A(x) satisfies: A(x) = x/(1 - x)^2 + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Dec 18 2019 a(n) = Sum_{d|n} A074206(d) * n/d. - David A. Corneth, Apr 13 2020 EXAMPLE a(2) = 2 + a(1) = 2 + 1 = 3, since the only proper divisors of 2 is 1. a(4) = 4 + a(1) + a(2) = 4 + 1 + 3 = 8, since the proper divisors of 4 are 1 and 2. a(6) = 6 + a(1) + a(2) + a(3) = 6 + 1 + 3 + 4 = 14, since the proper divisors of 6 are 1, 2 and 3. MAPLE f:= proc(n) option remember; n + add(procname(d), d = numtheory:-divisors(n) minus {n}) end proc: map(f, [\$1..100]); # Robert Israel, Dec 19 2019 MATHEMATICA a = 1; a[n_] := a[n] = n + DivisorSum[n, a[#] &, # < n &]; Array[a, 65] (* Amiram Eldar, Apr 12 2020 *) PROG (PARI) a(n) = if (n==1, 1, n + sumdiv(n, d, if (d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:40 EDT 2021. Contains 348211 sequences. (Running on oeis4.)