login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330575
a(n) = n + Sum_{d|n and d<n} a(d) for n>1; a(1) = 1.
11
1, 3, 4, 8, 6, 14, 8, 20, 14, 20, 12, 42, 14, 26, 26, 48, 18, 54, 20, 58, 34, 38, 24, 116, 32, 44, 46, 74, 30, 104, 32, 112, 50, 56, 50, 176, 38, 62, 58, 156, 42, 132, 44, 106, 96, 74, 48, 304, 58, 112, 74, 122, 54, 190, 74, 196, 82, 92, 60, 346, 62, 98, 124, 256, 86
OFFSET
1,2
LINKS
Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See Table 2 p. 11.
Thomas Fink, Recursively abundant and recursively perfect numbers, arXiv:2008.10398 [math.NT], 2020.
FORMULA
a(p) = p+1 for p prime.
a(n) = n + A255242(n). - Rémy Sigrist, Dec 18 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Dec 18 2019
a(n) = Sum_{d|n} A074206(d) * n/d. - David A. Corneth, Apr 13 2020
EXAMPLE
a(2) = 2 + a(1) = 2 + 1 = 3, since the only proper divisors of 2 is 1.
a(4) = 4 + a(1) + a(2) = 4 + 1 + 3 = 8, since the proper divisors of 4 are 1 and 2.
a(6) = 6 + a(1) + a(2) + a(3) = 6 + 1 + 3 + 4 = 14, since the proper divisors of 6 are 1, 2 and 3.
MAPLE
f:= proc(n) option remember;
n + add(procname(d), d = numtheory:-divisors(n) minus {n})
end proc:
map(f, [$1..100]); # Robert Israel, Dec 19 2019
MATHEMATICA
a[1] = 1; a[n_] := a[n] = n + DivisorSum[n, a[#] &, # < n &]; Array[a, 65] (* Amiram Eldar, Apr 12 2020 *)
PROG
(PARI) a(n) = if (n==1, 1, n + sumdiv(n, d, if (d<n, a(d))));
(Magma) a:=[1]; for n in [2..65] do Append(~a, (n+&+[a[d]:d in Set(Divisors(n)) diff {n}])); end for; a; // Marius A. Burtea, Dec 18 2019
CROSSREFS
Cf. A067824, A074206, A191161, A255242, A378217 (Dirichlet inverse).
Sequence in context: A129283 A332844 A347228 * A079787 A081307 A344225
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 18 2019
STATUS
approved