login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081543
G.f.: Sum_{k >= 1} x^k/(1-x^k)^(k+1).
15
1, 3, 4, 8, 6, 17, 8, 24, 20, 32, 12, 76, 14, 51, 72, 97, 18, 158, 20, 213, 142, 101, 24, 491, 152, 132, 248, 479, 30, 915, 32, 681, 398, 206, 828, 1859, 38, 249, 600, 2560, 42, 2692, 44, 1686, 2864, 347, 48, 6166, 1766, 3405, 1192, 2811, 54, 6796, 4424, 9987
OFFSET
1,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..999 from Harvey P. Dale)
FORMULA
If p is prime then a(p)=p+1.
a(n) = Sum_{d|n} binomial(d-1+n/d,d). - R. J. Mathar, Feb 21 2009
MATHEMATICA
With[{nn=50}, CoefficientList[Series[Sum[x^k/(1-x^k)^(k+1), {k, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, May 28 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, 1/(1-x^k)^k, x*O(x^(n^2))), n))
CROSSREFS
Cf. A157019.
Sequence in context: A079787 A081307 A344225 * A328876 A105753 A292822
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 21 2003
EXTENSIONS
Description corrected by Vladeta Jovovic, Aug 22 2003
Corrected offset R. J. Mathar, Feb 21 2009
STATUS
approved