login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157019 a(n) = Sum_{d|n} binomial(n/d+d-2, d-1). 17
1, 2, 2, 4, 2, 8, 2, 10, 8, 12, 2, 34, 2, 16, 32, 38, 2, 62, 2, 92, 58, 24, 2, 210, 72, 28, 92, 198, 2, 394, 2, 274, 134, 36, 422, 776, 2, 40, 184, 1142, 2, 1178, 2, 618, 1232, 48, 2, 2634, 926, 1482, 308, 964, 2, 2972, 2004, 4610, 382, 60, 2, 8576, 2, 64, 6470, 5130 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equals row sums of triangle A156348. - Gary W. Adamson & Mats Granvik, Feb 21 2009

a(n) = 2 iff n is prime.

The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - R. J. Mathar, Mar 03 2013

a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - Luc Rousseau, Jun 27 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul D. Hanna)

FORMULA

G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009

a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021

EXAMPLE

a(4) = 4 = 1 + 2 + 0 + 1.

MAPLE

A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:

MATHEMATICA

a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}];

Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=1, n, x^m/(1-x^m+x*O(x^n))^m), n)} \\ Paul D. Hanna, Mar 01 2009

CROSSREFS

Cf. A081543, A018818, A156838 (Mobius transform).

Cf. A156348.

Cf. A000010.

Sequence in context: A100577 A328710 A018818 * A067538 A305982 A304102

Adjacent sequences:  A157016 A157017 A157018 * A157020 A157021 A157022

KEYWORD

easy,nonn

AUTHOR

R. J. Mathar, Feb 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:53 EST 2021. Contains 349440 sequences. (Running on oeis4.)