OFFSET
1,2
COMMENTS
a(n) = 2 iff n is prime.
The binomial transform (note the offset) is 0, 1, 4, 11, 28, 67, 156, 359, 818, 1847, 4146, 9275, ... - R. J. Mathar, Mar 03 2013
a(n) is the number of distinct paths that connect the starting (1,1) point to the hyperbola with equation (x * y = n), when the choice for a move is constrained to belong to { (x := x + 1), (y := y + 1) }. - Luc Rousseau, Jun 27 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul D. Hanna)
FORMULA
G.f.: A(x) = Sum_{n>=1} x^n/(1 - x^n)^n. - Paul D. Hanna, Mar 01 2009
a(n) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, gcd(n,k) - 1) / phi(n/gcd(n,k)) = Sum_{k=1..n} binomial(gcd(n,k) + n/gcd(n,k) - 2, n/gcd(n,k) - 1) / phi(n/gcd(n,k)) where phi = A000010. - Richard L. Ollerton, May 19 2021
EXAMPLE
a(4) = 4 = 1 + 2 + 0 + 1.
MAPLE
A157019 := proc(n) add( binomial(n/d+d-2, d-1), d=numtheory[divisors](n) ) ; end:
MATHEMATICA
a[n_] := Sum[Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=1, n, x^m/(1-x^m+x*O(x^n))^m), n)} \\ Paul D. Hanna, Mar 01 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Feb 21 2009
STATUS
approved